Abstract

Optical interconnect system efficiency is dependent on the ability to optimize the transceiver circuitry for low-power and high-bandwidth operation, motivating co-simulation environments with compact optical device simulation models. This paper presents a compact Verilog-A silicon carrier-injection ring modulator model, which accurately captures both non-linear electrical and optical dynamics. The device's electrical behavior is described by a p-i-n diode SPICE model, while the optical response is captured with a dynamic ring resonator model, which considers the ring's cumulative phase shift. Experimental verification of the model is performed both at 8 Gb/s with symmetric drive signals to study the impact of pre-emphasis pulse duration, pulse depth, and dc bias, and at 9 Gb/s with a 65 nm CMOS driver capable of asymmetric pre-emphasis pulse duration. The potential for 15 Gb/s operation is shown by utilizing the presented model for optimization of the asymmetric pre-emphasis signal waveform.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription