Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 11,
  • pp. 2867-2880
  • (2016)

Group Delay Management and Multiinput Multioutput Signal Processing in Mode-Division Multiplexing Systems

Not Accessible

Your library or personal account may give you access

Abstract

Multi-input multi-output (MIMO) digital signal processing (DSP) for mode-division multiplexing (MDM) may have high complexity, owing to a plurality of modes and a potentially long group delay (GD) spread in multimode fiber (MMF). This paper addresses the management of GD in MMF and its implications for the complexity and performance of MIMO DSP. First, we review the generalized Jones and Stokes representations for modeling propagation in MMF, and describe key GD properties derived using the two representations. Then, we describe three approaches for GD management: 1) optimized fiber design, 2) mode coupling, and 3) GD compensation. For approach 1), we explain design principles for minimizing the GD spread. We review experimental results to date, showing that fabrication nonidealities significantly increase the GD spread, and this approach alone may not achieve sufficiently low GD spread. For approach 2), we describe mechanisms for inducing intragroup and intergroup coupling. We describe mode scrambler designs based on photonic lanterns or long-period fiber gratings, both of which can ensure strong intergroup coupling. For approach 3), we review GD-compensated system design principles and show that GD compensation is only partially effective in the presence of random intragroup or intergroup coupling. Finally, we provide an overview of adaptive MIMO frequency-domain equalization algorithms. Considering tradeoffs between complexity, performance, and adaptation time, we show that the GD spread is a key factor determining the feasibility of MIMO DSP, and its feasibility requires judicious GD management.

© 2016 IEEE

PDF Article
More Like This
Nonlinear interaction in differential mode delay managed mode-division multiplexed transmission systems

Georg Rademacher, Stefan Warm, and Klaus Petermann
Opt. Express 23(1) 55-60 (2015)

Quantification of MDL-induced signal degradation in MIMO-OFDM mode-division multiplexing systems

Yu Tian, Juhao Li, Paikun Zhu, Zhongying Wu, Yuanxiang Chen, Yongqi He, and Zhangyuan Chen
Opt. Express 24(17) 18948-18959 (2016)

Space-division multiplexing: the next frontier in optical communication

Guifang Li, Neng Bai, Ningbo Zhao, and Cen Xia
Adv. Opt. Photon. 6(4) 413-487 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.