Abstract

Photonic wire bonding is demonstrated to enable highly efficient coupling between multicore fibers and planar silicon photonic circuits. The technique relies on in-situ fabrication of three-dimensional interconnect waveguides between the fiber facet and tapered silicon-on-insulator waveguides. Photonic wire bonding can easily compensate inaccuracies of core placement in the fiber cross-section, does not require active alignment, and is well suited for automated fabrication. We report on the design, on fabrication, and on characterization of photonic wire bonds. In a proof-of-principle experiment, a four-core fiber is coupled to a silicon photonic chip, leading to measured coupling losses as small as 1.7 dB.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription