Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 23,
  • pp. 4985-4996
  • (2015)

An Optical Millimeter-Wave Generator Using Optical Higher Order Sideband Injection Locking in a Fabry–Pérot Laser Diode

Not Accessible

Your library or personal account may give you access

Abstract

We proposed an optical millimeter-wave generator using a directly modulated optical injection-locked Fabry–Pérot laser diode (FP-LD). In the proposed scheme, one of the higher order sidebands of the master laser light, which is generated by modulation of the bias current of the slave FP-LD, is used to injection-lock one of the FP-LD cavity modes. Low-phase noise millimeter wave is generated through the beating of the injection-locked FP-LD output and the injected master laser light. The proposed scheme does not require an external modulator, high-bandwidth devices, strong external optical injection power, or an additional optical filter. The effects of the choice of lower or upper sideband for injection locking, optical injection power, and amplitudes of the ac and dc components of the bias current on the proposed optical millimeter-wave generation scheme are studied. An experimental testbed is also built to realize the proposed optical millimeter-wave generation and its distribution in radio-over-fiber systems.

© 2015 IEEE

PDF Article
More Like This
Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking

Jin Huang, Changzheng Sun, Bing Xiong, and Yi Luo
Opt. Express 17(23) 20727-20734 (2009)

All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode

Yong Deok Jeong, Jeong Sik Cho, Yong Hyub Won, Hyuek Jae Lee, and Hark Yoo
Opt. Express 14(9) 4058-4063 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.