Abstract

A high precision demodulation method in frequency domain is proposed for a polarized low-coherence interferometer with location-dependent birefringence dispersion. By minimizing the frequency nonlinearity caused by dispersion effects, the proposed method avoids the jump errors of traditional frequency domain analysis method and exactly retrieve the absolute phase at multiselected-wavenumber point simultaneously, which makes it superior in accuracy, stability, and measurement range. We carried out experiments with an optical fiber Fabry–Pérot pressure sensing system to verify the effectiveness of the proposed method. The experiment result showed that the measured error was less than 0.049 kPa and the measurement range was widened to 285 kPa, which could be wider with suited experimental equipment and is no limit in theory.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription