Abstract

We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a $10\times 10 \times 10$ cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using nonlinear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors, and liquid crystal-based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5 W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.

© 2015 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ursinet al., “Space-quest, experiments with quantum entanglement in space,” Europhys. News, vol. 40, no. 3, pp. 26–29, 2009.
  2. T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: A proposal,” New J. Phys., vol. 15, no. 4, art. no. 043008, 2013
  3. T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.
  4. W. Morong, A. Ling, and D. Oi, “Quantum optics for space platforms,” Opt. Photon. News, vol. 23, pp. 42–49, 2012.
  5. A. Ling and D. Oi, “Small photon-entangling quantum systems (SPEQS) for LEO satellites,” in Proc. Int. Conf. Space Opt. Syst. Appl., 2012, vol. 12.
  6. J. Coopersmith, “The cost of reaching orbit: Ground-based launch systems,” Space Policy, vol. 27, no. 2, pp. 77–80, 2011.
  7. K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “Cubesats: Cost-effective science and technology platforms for emerging and developing nations,” Adv. Space Res., vol. 47, no. 4, pp. 663–684, 2011.
  8. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett., vol. 25, pp. 84–87, 1970.
  9. Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.
  10. J. Kataokaet al., “In-orbit performance of avalanche photodiode as radiation detector on board the picosatellite cute-1.7+apd ii,” J. Geophys. Res., vol. 115, no. A5, p. A05204, 2010.
  11. http://www.cubesat.org.
  12. Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Exp., vol. 21, no. 14, pp. 16946–16954, 2013.

2014 (2)

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

2013 (2)

T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: A proposal,” New J. Phys., vol. 15, no. 4, art. no. 043008, 2013

Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Exp., vol. 21, no. 14, pp. 16946–16954, 2013.

2012 (1)

W. Morong, A. Ling, and D. Oi, “Quantum optics for space platforms,” Opt. Photon. News, vol. 23, pp. 42–49, 2012.

2011 (2)

J. Coopersmith, “The cost of reaching orbit: Ground-based launch systems,” Space Policy, vol. 27, no. 2, pp. 77–80, 2011.

K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “Cubesats: Cost-effective science and technology platforms for emerging and developing nations,” Adv. Space Res., vol. 47, no. 4, pp. 663–684, 2011.

2010 (1)

J. Kataokaet al., “In-orbit performance of avalanche photodiode as radiation detector on board the picosatellite cute-1.7+apd ii,” J. Geophys. Res., vol. 115, no. A5, p. A05204, 2010.

2009 (1)

R. Ursinet al., “Space-quest, experiments with quantum entanglement in space,” Europhys. News, vol. 40, no. 3, pp. 26–29, 2009.

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett., vol. 25, pp. 84–87, 1970.

Bourgoin, J. P.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett., vol. 25, pp. 84–87, 1970.

Chandrasekara, R.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Exp., vol. 21, no. 14, pp. 16946–16954, 2013.

Cheng, C.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Exp., vol. 21, no. 14, pp. 16946–16954, 2013.

Choi, E.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Coopersmith, J.

J. Coopersmith, “The cost of reaching orbit: Ground-based launch systems,” Space Policy, vol. 27, no. 2, pp. 77–80, 2011.

Ehrenfreund, P.

K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “Cubesats: Cost-effective science and technology platforms for emerging and developing nations,” Adv. Space Res., vol. 47, no. 4, pp. 663–684, 2011.

Grant, C.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Hakima, H.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Hertzfeld, H.

K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “Cubesats: Cost-effective science and technology platforms for emerging and developing nations,” Adv. Space Res., vol. 47, no. 4, pp. 663–684, 2011.

Higgins, B.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Holloway, C.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Jennewein, T.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Kataoka, J.

J. Kataokaet al., “In-orbit performance of avalanche photodiode as radiation detector on board the picosatellite cute-1.7+apd ii,” J. Geophys. Res., vol. 115, no. A5, p. A05204, 2010.

Ling, A.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Exp., vol. 21, no. 14, pp. 16946–16954, 2013.

W. Morong, A. Ling, and D. Oi, “Quantum optics for space platforms,” Opt. Photon. News, vol. 23, pp. 42–49, 2012.

A. Ling and D. Oi, “Small photon-entangling quantum systems (SPEQS) for LEO satellites,” in Proc. Int. Conf. Space Opt. Syst. Appl., 2012, vol. 12.

Morong, W.

W. Morong, A. Ling, and D. Oi, “Quantum optics for space platforms,” Opt. Photon. News, vol. 23, pp. 42–49, 2012.

Oi, D.

W. Morong, A. Ling, and D. Oi, “Quantum optics for space platforms,” Opt. Photon. News, vol. 23, pp. 42–49, 2012.

A. Ling and D. Oi, “Small photon-entangling quantum systems (SPEQS) for LEO satellites,” in Proc. Int. Conf. Space Opt. Syst. Appl., 2012, vol. 12.

Pugh, C.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Ricco, A. J.

K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “Cubesats: Cost-effective science and technology platforms for emerging and developing nations,” Adv. Space Res., vol. 47, no. 4, pp. 663–684, 2011.

Scheidl, T.

T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: A proposal,” New J. Phys., vol. 15, no. 4, art. no. 043008, 2013

Sean, Y. Y.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

Tan, Y. C.

Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Exp., vol. 21, no. 14, pp. 16946–16954, 2013.

Tang, Z.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

Ursin, R.

T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: A proposal,” New J. Phys., vol. 15, no. 4, art. no. 043008, 2013

R. Ursinet al., “Space-quest, experiments with quantum entanglement in space,” Europhys. News, vol. 40, no. 3, pp. 26–29, 2009.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett., vol. 25, pp. 84–87, 1970.

Wildfeuer, C.

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

Wille, E.

T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: A proposal,” New J. Phys., vol. 15, no. 4, art. no. 043008, 2013

Woellert, K.

K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “Cubesats: Cost-effective science and technology platforms for emerging and developing nations,” Adv. Space Res., vol. 47, no. 4, pp. 663–684, 2011.

Zee, R.

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Adv. Space Res. (1)

K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, “Cubesats: Cost-effective science and technology platforms for emerging and developing nations,” Adv. Space Res., vol. 47, no. 4, pp. 663–684, 2011.

Europhys. News (1)

R. Ursinet al., “Space-quest, experiments with quantum entanglement in space,” Europhys. News, vol. 40, no. 3, pp. 26–29, 2009.

J. Geophys. Res. (1)

J. Kataokaet al., “In-orbit performance of avalanche photodiode as radiation detector on board the picosatellite cute-1.7+apd ii,” J. Geophys. Res., vol. 115, no. A5, p. A05204, 2010.

New J. Phys. (1)

T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: A proposal,” New J. Phys., vol. 15, no. 4, art. no. 043008, 2013

Opt. Exp. (1)

Y. C. Tan, R. Chandrasekara, C. Cheng, and A. Ling, “Silicon avalanche photodiode operation and lifetime analysis for small satellites,” Opt. Exp., vol. 21, no. 14, pp. 16946–16954, 2013.

Opt. Photon. News (1)

W. Morong, A. Ling, and D. Oi, “Quantum optics for space platforms,” Opt. Photon. News, vol. 23, pp. 42–49, 2012.

Phys. Rev. Lett. (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett., vol. 25, pp. 84–87, 1970.

Proc. SPIE (1)

T. Jennewein, C. Grant, E. Choi, C. Pugh, C. Holloway, J. P. Bourgoin, H. Hakima, B. Higgins, and R. Zee, “The NanoQEY mission: Ground to space quantum key and entanglement distribution using a nanosatellite,” Proc. SPIE, vol. 9254, art. no. 925402, 2014.

Sci. Rep. (1)

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep., vol. 4, pp. 63–66, 2014.

Space Policy (1)

J. Coopersmith, “The cost of reaching orbit: Ground-based launch systems,” Space Policy, vol. 27, no. 2, pp. 77–80, 2011.

Other (2)

http://www.cubesat.org.

A. Ling and D. Oi, “Small photon-entangling quantum systems (SPEQS) for LEO satellites,” in Proc. Int. Conf. Space Opt. Syst. Appl., 2012, vol. 12.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.