Abstract

This paper demonstrates a decision-directed, stable and high-sensitivity Costas loop homodyne receiver for 20-Gb/s QPSK signals based on our concept of the “optical frequency synchronous network.” The receiver sensitivity is shown to approach the theoretical shot-noise limit (as degraded by spontaneous emission) and the symbol-error rate is stably measured to be around 10−3 even though the optical signal was chirped by fiber chromatic dispersion and was delayed by 50% of the symbol period. This high-performance phase-locked loop can be realized by utilizing optical frequency stabilized (synchronized) several kilohertz spectral line-width external cavity laser diodes (E-LD's), compensating the frequency modulation (FM) response of the E-LDs, and consisting of only differential mode logical circuits. The compensation of the E-LD's FM response by the loop filter improves the receiver sensitivity by 3 dB.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription