Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 20,
  • pp. 4311-4317
  • (2015)

MMSE-Based Optimization of Perturbation Coefficients Quantization for Fiber Nonlinearity Mitigation

Not Accessible

Your library or personal account may give you access

Abstract

In perturbation-based digital fiber nonlinearity mitigation methods, such as pre-distortion and post-equalization, quantization of perturbation coefficients is employed to reduce the computational and implementation complexity. However, quantization introduces errors, which results in performance penalties. By analyzing the occurrence probability of the perturbation coefficients, an MMSE-based optimization of perturbation coefficients quantization is proposed and demonstrated in ultra-large-area-fiber transmission systems with a 36Gbd DP-16QAM modulation format. Compared to conventional uniform quantization schemes, a significant reduction in quantization errors has been realized for both the real and imaginary parts of the perturbation coefficients. Compared with the nonquantization case, computational term reduction by a factor of 50 is achieved in 2400 km ULAF transmission with < 0.2 dB Q degradation. For the same Q improvement, optimized quantization scheme further reduce the computational term by 50% compared to that of the uniform quantization method. We also analyze the tolerance to link dispersion.

© 2015 IEEE

PDF Article
More Like This
Degenerated look-up table–based perturbative fiber nonlinearity compensation algorithm for probabilistically shaped signals

Yiwen Wu, Huazhi Lun, Mengfan Fu, Xiaobo Zeng, Xiaomin Liu, Qiaoya Liu, Lilin Yi, Weisheng Hu, and Qunbi Zhuge
Opt. Express 28(9) 13401-13413 (2020)

Multi-stage perturbation theory for compensating intra-channel nonlinear impairments in fiber-optic links

Xiaojun Liang and Shiva Kumar
Opt. Express 22(24) 29733-29745 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved