Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 19,
  • pp. 4027-4031
  • (2015)

Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance

Not Accessible

Your library or personal account may give you access

Abstract

A novel porous-core kagome lattice photonic crystal fiber (PCF) is designed and analyzed in this paper for terahertz (THz) wave guidance. Using finite element method (FEM), properties of the proposed kagome lattice PCF are simulated in details including the effective material loss (EML), confinement loss, single-mode propagation, dispersion profile, and fraction of power in the porous-core with different core porosity. Simulation results indicate that 82.5% of bulk material loss of Topas can be reduced by using core porosity of 70%. The calculated EML is as low as 0.035 cm−1 at operating frequency 1 THz. In addition, the proposed PCF also exhibits relatively low confinement loss and a much more flattened dispersion profile with single mode propagation.

© 2015 IEEE

PDF Article
More Like This
Ultra low-loss hybrid core porous fiber for broadband applications

Md. Saiful Islam, Jakeya Sultana, Javid Atai, Derek Abbott, Sohel Rana, and Mohammad Rakibul Islam
Appl. Opt. 56(4) 1232-1237 (2017)

Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance

Md. Rabiul Hasan, Md. Shamim Anower, Md. Ariful Islam, and S. M. A. Razzak
Appl. Opt. 55(15) 4145-4152 (2016)

Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance

Kawsar Ahmed, Sawrab Chowdhury, Bikash Kumar Paul, Md. Shadidul Islam, Shuvo Sen, Md. Ibadul Islam, and Sayed Asaduzzaman
Appl. Opt. 56(12) 3477-3483 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved