Abstract

This paper presents the development of a Raman fiber amplifier optical source with a maximum output power of 1.1 W centered around 1651 nm, and its application in miniaturized 3D printed photoacoustic spectroscopy (PAS) trace gas sensing of methane. The Raman amplifier has been constructed using 4.5 km of dispersion shifted fiber, a 1651 nm DFB seed laser, and a commercial 4 W EDFA pump. The suppression of stimulated Brillouin scattering (SBS) using a high-frequency modulation of the seed laser is investigated for a range of frequencies, leading to an increase in the optical output power of the amplifier and reduction of its noise content. The amplifier output was used as the source for a miniature PAS sensor by applying a second modulation to the seed laser at the resonant frequency of 15.2 kHz of the miniature 3D printed gas cell. For the targeted methane absorption line at 6057 cm−1, the sensor system performance and influence of the SBS suppression is characterized, leading to a detection limit (1σ) of 17 ppb methane for a signal acquisition time of 130 s, with a normalized noise equivalent absorption coefficient of 4.1 · 10−9 cm−1 W Hz−1/2 for the system.

© 2015 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.
  2. T. Schmid, “Photoacoustic spectroscopy for process analysis,” Anal. Bioanal. Chem., vol. 384, no. 5, pp. 1071–1086, 2006.
  3. A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk, and V. S. Starovoitov, “A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing,” Appl. Phys. B, vol. 117, no. 2, pp. 549–561, 2014.
  4. M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH_4 and N_2O measurements near greater houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett., vol. 39, no. 4, pp. 957–960, 2014.
  5. A. G. Bell, “On the production and reproduction of sound by light,” Amer. J. Sci., vol. s3–20, no. 118, pp. 305–324, 1880.
  6. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett., vol. 37, no. 21, pp. 4461–4463, 2012.
  7. S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys., vol. 92, no. 3, pp. 1555–1563, 2002.
  8. R. Bauer, G. Stewart, W. Johnstone, E. Boyd, and M. Lengden, “3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases,” Opt. Lett., vol. 39, no. 16, pp. 4796–4799, 2014.
  9. C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.
  10. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors, vol. 14, no. 4, pp. 6165–6206, 2014.
  11. L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett., vol. 39, no. 8, pp. 2479–2482, 2014.
  12. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026–1028, 1987.
  13. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049–1056, 1997.
  14. M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt., vol. 42, no. 12, pp. 2119–26, 2003.
  15. J. P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B Lasers Opt., vol. 85, no. 2–3, pp. 323–328, 2006.
  16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Amsterdam, The Netherlands: Elsevier, 2006.
  17. R. H. Stolen, “The early years of fiber nonlinear optics,” J. Lightw. Technol., vol. 26, no. 9, pp. 1021–1031, 2008.
  18. L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.
  19. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 548–559, 2002.
  20. J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.
  21. R. Engelbrecht, “Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions,” J. Lightw. Technol., vol. 32, no. 9, pp. 1689–1700, 2014.
  22. D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightw. Technol., vol. 11, no. 11, pp. 1721–1728, 1993.
  23. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys., vol. 36, no. 8, pp. 2522–2524, 1965.
  24. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory,” Appl. Phys. B, vol. 26, no. 3, pp. 203–210, 1981.
  25. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods,” Appl. Opt., vol. 31, no. 6, pp. 707–717, 1992.
  26. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt., vol. 33, no. 27, pp. 6294–6302, 1994.
  27. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt., vol. 38, no. 27, pp. 5803–5815, 1999.
  28. S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt., vol. 42, no. 33, pp. 6728–6738, 2003.
  29. G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.
  30. J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.
  31. M. Wolff and H. Harde, “Photoacoustic spectrometer based on a DFB-diode laser,” Infrared Phys. Technol., vol. 41, no. 5, pp. 283–286, 2000.
  32. J.-P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, 2004.
  33. S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol., vol. 48, no. 2, pp. 154–162, 2006.
  34. M. Angelmahr, A Miklós, and P. Hess, “Wavelength- and amplitude-modulated photoacoustics: Comparison of simulated and measured spectra of higher harmonics,” Appl. Opt., vol. 47, no. 15, pp. 2806–2812, 2008.
  35. L. B. Kreuzer, “The physics of signal generation and detection,” in Optoacoustic Spectroscopy and Detection, New York, NY, USA: Academic, 1977.
  36. F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, 1996.
  37. H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys., vol. 35, pp. 12–15, 1961.
  38. J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.
  39. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.
  40. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B, vol. 102, no. 2, pp. 313–329, 2010.
  41. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1, p. 012004, 2013.

2014 (8)

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk, and V. S. Starovoitov, “A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing,” Appl. Phys. B, vol. 117, no. 2, pp. 549–561, 2014.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.

R. Engelbrecht, “Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions,” J. Lightw. Technol., vol. 32, no. 9, pp. 1689–1700, 2014.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors, vol. 14, no. 4, pp. 6165–6206, 2014.

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH_4 and N_2O measurements near greater houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett., vol. 39, no. 4, pp. 957–960, 2014.

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett., vol. 39, no. 8, pp. 2479–2482, 2014.

R. Bauer, G. Stewart, W. Johnstone, E. Boyd, and M. Lengden, “3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases,” Opt. Lett., vol. 39, no. 16, pp. 4796–4799, 2014.

2013 (2)

C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1, p. 012004, 2013.

2012 (2)

J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett., vol. 37, no. 21, pp. 4461–4463, 2012.

2011 (3)

G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

2010 (1)

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B, vol. 102, no. 2, pp. 313–329, 2010.

2008 (2)

2006 (3)

J. P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B Lasers Opt., vol. 85, no. 2–3, pp. 323–328, 2006.

T. Schmid, “Photoacoustic spectroscopy for process analysis,” Anal. Bioanal. Chem., vol. 384, no. 5, pp. 1071–1086, 2006.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol., vol. 48, no. 2, pp. 154–162, 2006.

2004 (1)

J.-P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, 2004.

2003 (2)

2002 (2)

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys., vol. 92, no. 3, pp. 1555–1563, 2002.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 548–559, 2002.

2000 (1)

M. Wolff and H. Harde, “Photoacoustic spectrometer based on a DFB-diode laser,” Infrared Phys. Technol., vol. 41, no. 5, pp. 283–286, 2000.

1999 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049–1056, 1997.

1996 (1)

F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, 1996.

1994 (1)

1993 (1)

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightw. Technol., vol. 11, no. 11, pp. 1721–1728, 1993.

1992 (1)

1987 (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026–1028, 1987.

1981 (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory,” Appl. Phys. B, vol. 26, no. 3, pp. 203–210, 1981.

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys., vol. 36, no. 8, pp. 2522–2524, 1965.

1961 (1)

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys., vol. 35, pp. 12–15, 1961.

1880 (1)

A. G. Bell, “On the production and reproduction of sound by light,” Amer. J. Sci., vol. s3–20, no. 118, pp. 305–324, 1880.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Amsterdam, The Netherlands: Elsevier, 2006.

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.

Angelmahr, M.

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys., vol. 36, no. 8, pp. 2522–2524, 1965.

Axner, O.

Bain, J.

G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.

Bain, J. R. P.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

Bauer, R.

Bell, A. G.

A. G. Bell, “On the production and reproduction of sound by light,” Amer. J. Sci., vol. s3–20, no. 118, pp. 305–324, 1880.

Bernacki, B. E.

Besson, J. P.

J. P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B Lasers Opt., vol. 85, no. 2–3, pp. 323–328, 2006.

Besson, J.-P.

J.-P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, 2004.

Bijnen, F. G. C.

F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, 1996.

Biriukov, A. S.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Borri, S.

Boyd, E.

Chen, S.

J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.

Cui, S.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.

Dianov, E. M.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Dobler, J.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Dong, L.

Duffin, K.

G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

Engelbrecht, R.

R. Engelbrecht, “Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions,” J. Lightw. Technol., vol. 32, no. 9, pp. 1689–1700, 2014.

Feng, Y.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.

Firebaugh, S. L.

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys., vol. 92, no. 3, pp. 1555–1563, 2002.

Fishman, D. A.

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightw. Technol., vol. 11, no. 11, pp. 1721–1728, 1993.

Gorelik, A. V.

A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk, and V. S. Starovoitov, “A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing,” Appl. Phys. B, vol. 117, no. 2, pp. 549–561, 2014.

Griffin, R. J.

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH_4 and N_2O measurements near greater houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett., vol. 39, no. 4, pp. 957–960, 2014.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

Guo, S.

J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049–1056, 1997.

Harde, H.

M. Wolff and H. Harde, “Photoacoustic spectrometer based on a DFB-diode laser,” Infrared Phys. Technol., vol. 41, no. 5, pp. 283–286, 2000.

Harren, F. J. M.

F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, 1996.

Herndon, S. C.

Hess, P.

Hirschmann, C. B.

C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1, p. 012004, 2013.

Hu, J.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.

Hughes, L. C.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 548–559, 2002.

Jahjah, M.

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026–1028, 1987.

Jensen, K. F.

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys., vol. 92, no. 3, pp. 1555–1563, 2002.

Jia, S.

Jiang, H.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.

Jiang, W.

Johnstone, W.

R. Bauer, G. Stewart, W. Johnstone, E. Boyd, and M. Lengden, “3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases,” Opt. Lett., vol. 39, no. 16, pp. 4796–4799, 2014.

G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

Keiski, R. L.

C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.

Kluczynski, P.

Kouzmouk, A. A.

A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk, and V. S. Starovoitov, “A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing,” Appl. Phys. B, vol. 117, no. 2, pp. 549–561, 2014.

Kreuzer, L. B.

L. B. Kreuzer, “The physics of signal generation and detection,” in Optoacoustic Spectroscopy and Detection, New York, NY, USA: Academic, 1977.

Kriesel, J.

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory,” Appl. Phys. B, vol. 26, no. 3, pp. 203–210, 1981.

Lehtinen, J.

C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.

Leng, J.

J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.

Lengden, M.

R. Bauer, G. Stewart, W. Johnstone, E. Boyd, and M. Lengden, “3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases,” Opt. Lett., vol. 39, no. 16, pp. 4796–4799, 2014.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

Lenth, W.

Liu, X.

Liu, Y.

Ma, W.

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026–1028, 1987.

Miklós, A

Nagel, J. A.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightw. Technol., vol. 11, no. 11, pp. 1721–1728, 1993.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049–1056, 1997.

Norwood, R. A.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Ojala, S.

C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049–1056, 1997.

Patel, C. K. N.

Patimisco, P.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH_4 and N_2O measurements near greater houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett., vol. 39, no. 4, pp. 957–960, 2014.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors, vol. 14, no. 4, pp. 6165–6206, 2014.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett., vol. 37, no. 21, pp. 4461–4463, 2012.

Payne, D. N.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026–1028, 1987.

Peyghambarian, N.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Pushkarsky, M.

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026–1028, 1987.

Reid, J.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory,” Appl. Phys. B, vol. 26, no. 3, pp. 203–210, 1981.

Ren, W.

Reuss, J.

F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, 1996.

Robert, P.

Rochat, E.

J. P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B Lasers Opt., vol. 85, no. 2–3, pp. 323–328, 2006.

Ruxton, K.

G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

Sanchez, N. P.

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH_4 and N_2O measurements near greater houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett., vol. 39, no. 4, pp. 957–960, 2014.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

Scamarcio, G.

Schilt, S.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol., vol. 48, no. 2, pp. 154–162, 2006.

J. P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B Lasers Opt., vol. 85, no. 2–3, pp. 323–328, 2006.

J.-P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, 2004.

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt., vol. 42, no. 33, pp. 6728–6738, 2003.

Schmid, T.

T. Schmid, “Photoacoustic spectroscopy for process analysis,” Anal. Bioanal. Chem., vol. 384, no. 5, pp. 1071–1086, 2006.

Schmidt, M. A.

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys., vol. 92, no. 3, pp. 1555–1563, 2002.

Silver, J. A.

Spagnolo, V.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors, vol. 14, no. 4, pp. 6165–6206, 2014.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH_4 and N_2O measurements near greater houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett., vol. 39, no. 4, pp. 957–960, 2014.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett., vol. 37, no. 21, pp. 4461–4463, 2012.

Starovoitov, V. S.

A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk, and V. S. Starovoitov, “A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing,” Appl. Phys. B, vol. 117, no. 2, pp. 549–561, 2014.

Stewart, G.

R. Bauer, G. Stewart, W. Johnstone, E. Boyd, and M. Lengden, “3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases,” Opt. Lett., vol. 39, no. 16, pp. 4796–4799, 2014.

G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

Stolen, R. H.

R. H. Stolen, “The early years of fiber nonlinear optics,” J. Lightw. Technol., vol. 26, no. 9, pp. 1021–1031, 2008.

Supplee, J. M.

Sysoliatin, A. A.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1, p. 012004, 2013.

Temyanko, V.

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Thevenaz, L.

Thévenaz, L.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol., vol. 48, no. 2, pp. 154–162, 2006.

J. P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B Lasers Opt., vol. 85, no. 2–3, pp. 323–328, 2006.

J.-P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, 2004.

Tittel, F. K.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett., vol. 39, no. 8, pp. 2479–2482, 2014.

M. Jahjah, W. Jiang, N. P. Sanchez, W. Ren, P. Patimisco, V. Spagnolo, S. C. Herndon, R. J. Griffin, and F. K. Tittel, “Atmospheric CH_4 and N_2O measurements near greater houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013,” Opt. Lett., vol. 39, no. 4, pp. 957–960, 2014.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors, vol. 14, no. 4, pp. 6165–6206, 2014.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049–1056, 1997.

Ulasevich, A. L.

A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk, and V. S. Starovoitov, “A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing,” Appl. Phys. B, vol. 117, no. 2, pp. 549–561, 2014.

Uotila, J.

C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.

Wahlquist, H.

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys., vol. 35, pp. 12–15, 1961.

Webber, M. E.

Werle, P.

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B, vol. 102, no. 2, pp. 313–329, 2010.

Whittaker, E. A.

Wolff, M.

M. Wolff and H. Harde, “Photoacoustic spectrometer based on a DFB-diode laser,” Infrared Phys. Technol., vol. 41, no. 5, pp. 283–286, 2000.

Wu, H.

Wu, W.

J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.

Xie, F.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

Xu, X.

J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.

Yin, W.

Zah, C.

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

Zhang, L.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.

L. Dong, H. Wu, H. Zheng, Y. Liu, X. Liu, W. Jiang, L. Zhang, W. Ma, W. Ren, W. Yin, S. Jia, and F. K. Tittel, “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy,” Opt. Lett., vol. 39, no. 8, pp. 2479–2482, 2014.

Zheng, H.

Amer. J. Sci. (1)

A. G. Bell, “On the production and reproduction of sound by light,” Amer. J. Sci., vol. s3–20, no. 118, pp. 305–324, 1880.

Anal. Bioanal. Chem. (1)

T. Schmid, “Photoacoustic spectroscopy for process analysis,” Anal. Bioanal. Chem., vol. 384, no. 5, pp. 1071–1086, 2006.

Appl. Opt. (6)

Appl. Phys. B (4)

A. L. Ulasevich, A. V. Gorelik, A. A. Kouzmouk, and V. S. Starovoitov, “A compact resonant Π-shaped photoacoustic cell with low window background for gas sensing,” Appl. Phys. B, vol. 117, no. 2, pp. 549–561, 2014.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory,” Appl. Phys. B, vol. 26, no. 3, pp. 203–210, 1981.

C. B. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. L. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B, vol. 111, no. 4, pp. 603–610, 2013.

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B, vol. 102, no. 2, pp. 313–329, 2010.

Appl. Phys. B Lasers Opt. (1)

J. P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B Lasers Opt., vol. 85, no. 2–3, pp. 323–328, 2006.

Appl. Phys. Lett. (1)

W. Ren, W. Jiang, N. P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L. C. Hughes, R. J. Griffin, and F. K. Tittel, “Hydrogen peroxide detection with quartz-enhanced photoacoustic spectroscopy using a distributed-feedback quantum cascade laser,” Appl. Phys. Lett., vol. 104, no. 4, p. 041117, 2014.

Electron. Lett. (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026–1028, 1987.

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049–1056, 1997.

IEEE J. Sel. Topics Quantum Electron. (1)

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 548–559, 2002.

IEEE Photon. Technol. Lett. (1)

J. A. Nagel, V. Temyanko, J. Dobler, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, R. A. Norwood, and N. Peyghambarian, “High-power narrow-linewidth continuous-wave Raman amplifier at 1.27 um,” IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 585–587, 2011.

Infrared Phys. Technol. (2)

M. Wolff and H. Harde, “Photoacoustic spectrometer based on a DFB-diode laser,” Infrared Phys. Technol., vol. 41, no. 5, pp. 283–286, 2000.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol., vol. 48, no. 2, pp. 154–162, 2006.

J. Appl. Phys. (2)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys., vol. 36, no. 8, pp. 2522–2524, 1965.

S. L. Firebaugh, K. F. Jensen, and M. A. Schmidt, “Miniaturization and integration of photoacoustic detection,” J. Appl. Phys., vol. 92, no. 3, pp. 1555–1563, 2002.

J. Chem. Phys. (1)

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys., vol. 35, pp. 12–15, 1961.

J. Lightw. Technol. (5)

R. H. Stolen, “The early years of fiber nonlinear optics,” J. Lightw. Technol., vol. 26, no. 9, pp. 1021–1031, 2008.

R. Engelbrecht, “Analysis of SBS gain shaping and threshold increase by arbitrary strain distributions,” J. Lightw. Technol., vol. 32, no. 9, pp. 1689–1700, 2014.

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightw. Technol., vol. 11, no. 11, pp. 1721–1728, 1993.

G. Stewart, W. Johnstone, J. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis,” J. Lightw. Technol., vol. 29, no. 6, pp. 811–821, 2011.

J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation,” J. Lightw. Technol., vol. 29, no. 7, pp. 987–996, 2011.

Laser Photon. Rev. (1)

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photon. Rev., vol. 8, no. 6, pp. 889–895, 2014.

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol., vol. 24, no. 1, p. 012004, 2013.

Opt. Lett. (4)

Optik—Int. J. Lightw. Electron Opt. (1)

J. Leng, S. Chen, W. Wu, S. Guo, and X. Xu, “Investigation on the suppression of stimulated Brillouin scattering in single-frequency Raman fiber amplifiers,” Optik—Int. J. Lightw. Electron Opt., vol. 123, no. 8, pp. 659–664, 2012.

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE, vol. 54, no. 2, pp. 221–230, 1966.

Rev. Sci. Instrum. (1)

F. G. C. Bijnen, J. Reuss, and F. J. M. Harren, “Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection,” Rev. Sci. Instrum., vol. 67, no. 8, pp. 2914–2923, 1996.

Sensors (1)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: A review,” Sensors, vol. 14, no. 4, pp. 6165–6206, 2014.

Spectrochim. Acta A, Mol. Biomol. Spectrosc. (1)

J.-P. Besson, S. Schilt, and L. Thévenaz, “Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes,” Spectrochim. Acta A, Mol. Biomol. Spectrosc., vol. 60, no. 14, pp. 3449–3456, 2004.

Other (2)

L. B. Kreuzer, “The physics of signal generation and detection,” in Optoacoustic Spectroscopy and Detection, New York, NY, USA: Academic, 1977.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Amsterdam, The Netherlands: Elsevier, 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.