Abstract

Photo-thermo-refractive (PTR) glasses are the class of polyfunctional materials that combine the properties of several monofunctional materials such as photo-refractive, laser, luminescent, and plasmonic ones. Based on PTR glasses, various diffractive holographic elements and photonic devices were developed in both the volume and fiber versions. In this paper, the fabrication of optical planar waveguides on PTR glass by low-temperature ion exchange is reported for the first time. Planar waveguides were fabricated through substituting the sodium ions in glass by silver, potassium, rubidium, and cesium ones from the nitrate melts. The silver waveguides were shown to have the largest depth (27 μm) and reveal no birefringence. For the silver waveguides, an increase in the refractive index is caused by differences in the polarizabilities of cations exchanged. The maximum increment of the refractive index was observed in the cesium waveguides (0.0512). An increase in the refractive index and also appearing the birefringence in potassium, rubidium, and cesium waveguides are found to be due to the compressive mechanical stresses and their relaxation. The potentialities of the ion exchange technology for fabricating, in PTR glasses, planar gradient waveguides with low losses (0.5 dB/cm) are demonstrated, the potentialities extending the application field of PTR glasses in photonics.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription