Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 16,
  • pp. 3494-3502
  • (2015)

Near-Field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces

Not Accessible

Your library or personal account may give you access

Abstract

Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here, we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically “pushing” a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by the thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles/h. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

© 2015 IEEE

PDF Article
More Like This
Near-field probing of Bloch surface waves in a dielectric multilayer using photonic force microscopy

Daniil A. Shilkin, Evgeny V. Lyubin, Irina V. Soboleva, and Andrey A. Fedyanin
J. Opt. Soc. Am. B 33(6) 1120-1127 (2016)

Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes

Élodie Lamothe, Gaëtan Lévêque, and Olivier J. F. Martin
Opt. Express 15(15) 9631-9644 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.