Abstract

In this paper, we present a 1050-nm electrically pumped microelectromechanically tunable vertical cavity surface-emitting laser (MEMS-VCSEL) with a record dynamic tuning bandwidth of 63.8 nm, suitable for swept-source optical coherence tomography (SS-OCT) imaging. These devices provide reduced cost and complexity relative to previously demonstrated optically pumped devices by obviating the need for a pump laser and associated hardware. We demonstrate ophthalmic SS-OCT imaging with the electrically-pumped MEMS-VCSEL at a 400 kHz axial scan rate for wide-field imaging of the in vivo human retina over a $12\; {\rm mm} \times 12\; {\rm mm}$ field and for OCT angiography of the macula over $6\; {\rm mm} \times 6\; {\rm mm}$ and $3\; {\rm mm} \times 3\; {\rm mm}$ fields to show retinal vasculature and capillary structure near the fovea. These results demonstrate the feasibility of electrically pumped MEMS-VCSELs in ophthalmic instrumentation, the largest clinical application of OCT. In addition, we estimate that the 3 dB coherence length in air is 225 ± 51 m, far greater than required for ophthalmic SS-OCT and suggestive of other distance ranging applications.

© 2015 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.
  2. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.
  3. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.
  4. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimotoet al., “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett., vol. 38, pp. 673–675, 2013.
  5. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.
  6. V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.
  7. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liuet al., “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett., vol. 38, pp. 338–340, 2013.
  8. W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.
  9. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.
  10. T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.
  11. T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 365–367, 2013.
  12. T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.
  13. L. A. Coldren, S. W. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. Hoboken, NJ, USA: Wiley, 2012.
  14. A. Yariv, Optical Electronics. New York, NY, USA: Holt, Rinehart, and Winston, 1985.
  15. D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.
  16. Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.
  17. H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.
  18. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications. New York, NY, USA: Springer, 2008, p. 362.
  19. T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices, vol. 40, no. 5, pp. 903–909, 1993.
  20. C. H. Liu and T. W. Kenny, “A high-precision, wide-bandwidth micromachined tunneling accelerometer,” J. Microelectromech. Syst., vol. 10, pp. 425–433, 2001.
  21. F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.
  22. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.
  23. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Exp., vol. 16, pp. 11 438–11 452, 2008.
  24. J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Exp., vol. 15, pp. 12 636–12 653, 2007.
  25. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.
  26. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leunget al., “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett., vol. 33, pp. 1530–1532, 2008.

2014 (1)

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

2013 (6)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimotoet al., “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett., vol. 38, pp. 673–675, 2013.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liuet al., “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett., vol. 38, pp. 338–340, 2013.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 365–367, 2013.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

2012 (2)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

2011 (1)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.

2010 (1)

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

2008 (2)

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leunget al., “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett., vol. 33, pp. 1530–1532, 2008.

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Exp., vol. 16, pp. 11 438–11 452, 2008.

2007 (2)

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Exp., vol. 15, pp. 12 636–12 653, 2007.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

2006 (1)

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.

2004 (1)

D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.

2001 (1)

C. H. Liu and T. W. Kenny, “A high-precision, wide-bandwidth micromachined tunneling accelerometer,” J. Microelectromech. Syst., vol. 10, pp. 425–433, 2001.

1999 (1)

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

1995 (1)

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.

1993 (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices, vol. 40, no. 5, pp. 903–909, 1993.

An, L.

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Exp., vol. 16, pp. 11 438–11 452, 2008.

Ansbaek, T.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 365–367, 2013.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.

Baumann, B.

Biedermann, B. R.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.

Burgner, C.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

Cable, A.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.

Chang-Hasnain, C. J.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.

Chase, C.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Chitgarha, M. R.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Choi, W.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liuet al., “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett., vol. 38, pp. 338–340, 2013.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

Chung, I. S.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.

Chung, I.-S.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 365–367, 2013.

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. Hoboken, NJ, USA: Wiley, 2012.

Cole, G.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

Corredoura, P.

D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. Hoboken, NJ, USA: Wiley, 2012.

di Sopra, F. M.

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

Drexler, W.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications. New York, NY, USA: Springer, 2008, p. 362.

Eigenwillig, C. M.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.

Fingler, J.

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Exp., vol. 15, pp. 12 636–12 653, 2007.

Fraser, S. E.

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Exp., vol. 15, pp. 12 636–12 653, 2007.

Fujimoto, J.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimotoet al., “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett., vol. 38, pp. 673–675, 2013.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications. New York, NY, USA: Springer, 2008, p. 362.

Gabrielson, T. B.

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices, vol. 40, no. 5, pp. 903–909, 1993.

Gauggel, H. P.

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

Geiger, K.

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

Gruendl, T.

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

Grulkowski, I.

Gulden, K.

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

Halbritter, H.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

Hansen, O.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.

Hartnagel, H. L.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.

Hong, Y.

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.

Hovel, R.

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

Huang, M. C. Y.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Huber, D.

D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.

Huber, R.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.

Jatta, S.

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

Jayaraman, V.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liuet al., “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett., vol. 38, pp. 338–340, 2013.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimotoet al., “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett., vol. 38, pp. 673–675, 2013.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.

Jiang, J.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimotoet al., “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett., vol. 38, pp. 673–675, 2013.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.

John, D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

Kamas, L.

D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.

Kenny, T. W.

C. H. Liu and T. W. Kenny, “A high-precision, wide-bandwidth micromachined tunneling accelerometer,” J. Microelectromech. Syst., vol. 10, pp. 425–433, 2001.

Khaleghi, S.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Khurana, M.

Klein, T.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.

Kogel, B.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

Kraus, M. F.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

Lester, S.

D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.

Leung, M. K. K.

Li, G. S.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.

Liu, C. H.

C. H. Liu and T. W. Kenny, “A high-precision, wide-bandwidth micromachined tunneling accelerometer,” J. Microelectromech. Syst., vol. 10, pp. 425–433, 2001.

Liu, J. J.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimotoet al., “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett., vol. 38, pp. 673–675, 2013.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liuet al., “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett., vol. 38, pp. 338–340, 2013.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.

Lu, C. D.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.

Makita, S.

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.

Mariampillai, A.

Mashanovitch, M.

L. A. Coldren, S. W. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. Hoboken, NJ, USA: Wiley, 2012.

Meissner, P.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

Mohler, K. J.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

Moriyama, E. H.

Moser, M.

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

Mueller, M.

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

Munce, N. R.

Nagel, R. D.

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

Potsaid, B.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liuet al., “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett., vol. 38, pp. 338–340, 2013.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimotoet al., “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett., vol. 38, pp. 673–675, 2013.

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.

Rao, Y.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Riemenschneider, F.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

Robbins, V.

D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

Schwartz, D.

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Exp., vol. 15, pp. 12 636–12 653, 2007.

Semenova, E. S.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 365–367, 2013.

Standish, B. A.

Sydlo, C.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

Vail, E. C.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.

Wang, R. K. K.

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Exp., vol. 16, pp. 11 438–11 452, 2008.

Wieser, W.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.

Willner, A. E.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Worland, D. P.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Wu, M. S.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.

Yamanari, M.

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.

Yang, C. H.

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Exp., vol. 15, pp. 12 636–12 653, 2007.

Yang, W. J.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Yariv, A.

A. Yariv, Optical Electronics. New York, NY, USA: Holt, Rinehart, and Winston, 1985.

Yasuno, Y.

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.

Yatagai, T.

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.

Yuen, W.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.

Yvind, K.

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 365–367, 2013.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.

Zappe, H. P.

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

Ziyadi, M.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

Zogal, K.

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

Biomed. Opt. Exp. (2)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jianget al., “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp., vol. 3, pp. 2733–2751, 2012.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaramanet al., “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Exp., vol. 5, pp. 293–311, 2014.

Electron. Lett. (2)

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddinet al., “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett., vol. 48, pp. 1331–1332, 2012.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, pp. 1671–1672, 1995.

IEEE J. Sel. Topics Quantum Electron. (3)

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1702306, 2013.

Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, art. no. 1701311, 2013.

H. Halbritter, C. Sydlo, B. Kogel, F. Riemenschneider, H. L. Hartnagel, and P. Meissner, “Impact of micromechanics on the linewidth and chirp performance of MEMS-VCSELs,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 2, pp. 367–373, 2007.

IEEE Photon. Technol. Lett. (2)

T. Ansbaek, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., vol. 25, no. 4, pp. 365–367, 2013.

F. M. di Sopra, H. P. Zappe, M. Moser, R. Hovel, H. P. Gauggel, and K. Gulden, “Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1533–1535, 1999.

IEEE Trans. Electron Devices (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices, vol. 40, no. 5, pp. 903–909, 1993.

J. Microelectromech. Syst. (2)

C. H. Liu and T. W. Kenny, “A high-precision, wide-bandwidth micromachined tunneling accelerometer,” J. Microelectromech. Syst., vol. 10, pp. 425–433, 2001.

D. Huber, P. Corredoura, S. Lester, V. Robbins, and L. Kamas, “Reducing brownian motion in an electrostatically tunable MEMS laser,” J. Microelectromech. Syst., vol. 13, pp. 732–736, 2004.

Opt. Exp. (4)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser,” Opt. Exp., vol. 19, pp. 3044–3062, 2011.

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Exp., vol. 16, pp. 11 438–11 452, 2008.

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Exp., vol. 15, pp. 12 636–12 653, 2007.

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Exp., vol. 14, pp. 7821–7840, 2006.

Opt. Lett. (3)

Plos One (1)

W. Choi, K. J. Mohler, B. Potsaid, C. D. Lu, J. J. Liu, V. Jayaramanet al., “Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography,” Plos One, vol. 8, pp. e81499-1–e81499-82013.

Proc. SPIE (1)

T. Gruendl, K. Zogal, M. Mueller, R. D. Nagel, S. Jatta, K. Geigeret al., “High-speed and high-power vertical-cavity surface-emitting lasers based on InP suitable for telecommunication and gas sensing,” Proc. SPIE, vol. 7828, pp. 782807-1–782807-13, 2010.

Other (5)

L. A. Coldren, S. W. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. Hoboken, NJ, USA: Wiley, 2012.

A. Yariv, Optical Electronics. New York, NY, USA: Holt, Rinehart, and Winston, 1985.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications. New York, NY, USA: Springer, 2008, p. 362.

V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, and A. Cable, “Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography,” Proc. SPIE, vol. 8276, pp. 82760D-1–82670D-11, 2012.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE, vol. 8213, pp. 8230M–1–8230M-8, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.