Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 14,
  • pp. 3108-3115
  • (2015)

Analysis and Design of Loop Gains to Optimize the Dynamic Performance of Optical Voltage Sensor Based on Pockels Effect

Not Accessible

Your library or personal account may give you access

Abstract

A design method of loop gains is proposed for improving the fast dynamic tracking performance of optical voltage sensor (OVS) based on Pockels effect. The distribution principle of loop gains is investigated in theory according to the characteristics of closed-loop error of OVS. Based on the obtained distribution principle of loop gains, the hardware circuit and the control parameters of the controller are designed to improve the signal to noise ratio (SNR) of closed-loop error and the dynamic performance of OVS, respectively. The experimental results demonstrate that the system can achieve the high dynamic performance under the high detection precision: OVS can accurately track 13th harmonic with 1.57% measurement error and 4.24° phase error, and the long term steady accuracy of power frequency voltage is within ±0.1%. The experimental results validate the effectiveness of our new design method of loop gains.

© 2015 IEEE

PDF Article
More Like This
Linear birefringence-free optical voltage sensor based on dual-crystal structure

Lijing Li, Wenhui Zhang, Hui Li, and Rui Pan
Appl. Opt. 52(36) 8706-8713 (2013)

Birefringence elimination of bismuth germanate crystal in quasi-reciprocal reflective optical voltage sensor

Xiujuan Feng, Lijing Li, Xiaxiao Wang, Chunxi Zhang, Jia Yu, and Chuansheng Li
Appl. Opt. 52(8) 1676-1681 (2013)

Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability

Hui Li, Liying Liu, Zhili Lin, Qiwei Wang, Xiao Wang, and Lishuang Feng
Opt. Express 26(2) 1145-1160 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.