Abstract

A high spectral efficiency coherent microwave photonic link (MPL) supporting amplitude and phase modulation incorporating a digital phase noise cancellation is proposed and experimentally demonstrated. At the transmitter, a continuous-wave light wave is amplitude- and phase-modulated by two microwave vector signals carried by a microwave carrier at an identical frequency. The modulated optical signal is polarization multiplexed with an unmodulated optical carrier and transmitted over a length of a single-mode fiber (SMF). At the receiver, the optical signal is detected coherently by a coherent receiver to which a local oscillator (LO) laser source is also applied. Through advanced digital signal processing, the microwave vector signals are recovered, and the phase noise introduced by both the transmitter laser source and LO laser source is cancelled. An experiment is performed. The transmission of a 2.5-Gb/s 16-QAM and a 1.25-Gb/s QPSK microwave vector signals both at 2.5 GHz over a 25-km SMF is implemented. The total bit rate of the MPL is 3.75 Gb/s. The transmission performance of the MPL in terms of error vector magnitudes and bit error rates is evaluated.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription