Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 1,
  • pp. 117-125
  • (2015)

Adaptive Modulation Schemes for Visible Light Communications

Not Accessible

Your library or personal account may give you access

Abstract

A major limitation of existing visible light communication (VLC) systems is the limited modulation bandwidth of light-emitting diodes used in such systems. Using adaptive modulation to improve the spectral efficiency for radio communications has been well studied. For VLC with various physical layer schemes, however, how adaptive modulation works is not well understood yet. The goal of this paper is to provide an in-depth analysis of the achievable spectral efficiency of adaptive modulation for three different schemes for high speed VLC: dc-biased optical orthogonal frequency division multiplexing (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), and single-carrier frequency-domain equalization (SC-FDE). We will show that in the low signal-to-noise ratio region, the ACO-OFDM-based adaptive modulation scheme outperforms the other two schemes. SC-FDE-based adaptive modulation achieves a better performance than the DCO-OFDM-based scheme, and it is much simpler than the other two schemes.

© 2014 IEEE

PDF Article
More Like This
An adaptive scaling and biasing scheme for OFDM-based visible light communication systems

Zhaocheng Wang, Qi Wang, Sheng Chen, and Lajos Hanzo
Opt. Express 22(10) 12707-12715 (2014)

BICM-ID scheme for clipped DCO-OFDM in visible light communications

Jiandong Tan, Zhaocheng Wang, Qi Wang, and Linglong Dai
Opt. Express 24(5) 4573-4581 (2016)

PAPR analysis for OFDM visible light communication

Jiaheng Wang, Yang Xu, Xintong Ling, Rong Zhang, Zhi Ding, and Chunming Zhao
Opt. Express 24(24) 27457-27474 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.