Abstract

A plasmonic bus waveguide with a side-coupled T-shaped (TS) or a reverse T-shaped (RTS) resonator consisting of a parallel and a perpendicular cavities is proposed. The compact configuration could serve as a wavelength demultiplexing device as a forbidden band is achieved based on the symmetric distribution of resonators. By shifting one cavity away from the center of the resonator, the system exhibits electromagnetically induced transparency (EIT) like transmission at the wavelength of the former forbidden band. The electromagnetic responses of the structure could be handled with certain flexibility by changing the asymmetric behavior of the TS or RTS resonator. Similar characteristics for two proposed structures could be obtained except for the center wavelength that is determined by the two cavities in the RTS resonator or by the cavity parallel to the bus waveguide in the TS resonator.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
  2. R. W. Boyd, D. J. Gauthier, "Photonics: Transparency on an optical chip," Nature 441, 701-702 (2006).
  3. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett. 102, 053901 (2009).
  4. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Phys. Rev. B 80 , 153103 (2009 ).
  5. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Opt. Exp. 17, 5595-5605 (2009).
  6. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7 , 1-15 (2005).
  7. K. Aydin, I. M. Pryce, H. A. Atwater, "Symmetry breaking and strong coupling in planar optical metamaterials," Opt. Exp. 18, 13407-13417 ( 2010).
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, " Plasmon-induced transparency in metamaterials," Phys. Rev. Lett. 101, 047401 (2008 ).
  9. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett. 10, 1103-1107 (2010).
  10. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd, "Coupled resonator induced transparency," Phys. Rev. A 69, 063804 (2004).
  11. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
  12. R. D. Kekatpure, E. S. Barnard, W. Cai, M. L. Brongersma, "Phase-coupled plasmon induced transparency ," Phys. Rev. Lett. 104, 243902 (2010).
  13. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics ," Nature 424, 824-830 (2003).
  14. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators ," Nature 440, 508-511 (2006).
  15. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: The next chip-scale technology," Mater. Today 9, 20-27 (2006).
  16. K.-H. Wen, L.-S. Yan, W. Pan, B. Luo, Z. Guo, Y.-H. Guo, "A four-port plasmonic quasi-circulator based on metal-insulator-metal waveguides," Opt. Exp. 20, 28025-28032 ( 2012).
  17. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, N. P. Johnson, "Magnetic response of split ring resonators (SRRs) at visible frequencies," Opt. Exp. 18, 3210-3218 (2010).
  18. P. Gay-Balmaz, O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929 -2935 (2002).
  19. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
  20. B. Kanté, A. de Lustrac, J. M. Lourtioz, "In-plane coupling and field enhancement in infrared metamaterial surfaces," Phys. Rev. B 80, 035108 (2009).
  21. I. Chremmos, "Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal," J. Opt. Soc. Amer. A 26, 2623-2633 (2009).
  22. H. Lu, X. M. Liu, D. Mao, Y. K. Gong, G. X. Wang, "Induced transparency in nanoscale plasmonic resonator systems," Opt. Lett. 36, 3233-3235 (2011).
  23. Z. H. Han, S. I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Exp. 19, 3251-3257 (2011).
  24. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
  25. S. I. Bozhevolnyi, J. Jung, "Scaling for gap plasmon based waveguides," Opt. Exp. 16, 2676-2684 (2008).
  26. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  27. F. F. Hu, H. X. Yi, Z. P. Zhou, "Wavelength demultiplexing structure based on arrayed plasmonic slot cavities," Opt. Lett. 36, 1500-1502 (2011).
  28. J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
  29. Q. Li, T. Wang, Y. K. Su, M. Yan, M. Qiu, "Coupled mode theory analysis of mode-splitting in coupled cavity system," Opt. Exp. 18, 8367-8382 (2010).
  30. X. Zou, M. Li, W. Pan, L. Yan, J. Aza $\tilde{n}$ a, and J. Yao, “All-fiber optical filter with an ultra-narrow and rectangular spectral response,” Opt. Lett., vol. 38, no. 16, pp. 3096–3098, Aug. 2013..
  31. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3470–3478, Sep. 2013..

2011

H. Lu, X. M. Liu, D. Mao, Y. K. Gong, G. X. Wang, "Induced transparency in nanoscale plasmonic resonator systems," Opt. Lett. 36, 3233-3235 (2011).

Z. H. Han, S. I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Exp. 19, 3251-3257 (2011).

F. F. Hu, H. X. Yi, Z. P. Zhou, "Wavelength demultiplexing structure based on arrayed plasmonic slot cavities," Opt. Lett. 36, 1500-1502 (2011).

2010

Q. Li, T. Wang, Y. K. Su, M. Yan, M. Qiu, "Coupled mode theory analysis of mode-splitting in coupled cavity system," Opt. Exp. 18, 8367-8382 (2010).

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett. 10, 1103-1107 (2010).

R. D. Kekatpure, E. S. Barnard, W. Cai, M. L. Brongersma, "Phase-coupled plasmon induced transparency ," Phys. Rev. Lett. 104, 243902 (2010).

B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, N. P. Johnson, "Magnetic response of split ring resonators (SRRs) at visible frequencies," Opt. Exp. 18, 3210-3218 (2010).

2009

B. Kanté, A. de Lustrac, J. M. Lourtioz, "In-plane coupling and field enhancement in infrared metamaterial surfaces," Phys. Rev. B 80, 035108 (2009).

I. Chremmos, "Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal," J. Opt. Soc. Amer. A 26, 2623-2633 (2009).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett. 102, 053901 (2009).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Opt. Exp. 17, 5595-5605 (2009).

J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).

2008

S. I. Bozhevolnyi, J. Jung, "Scaling for gap plasmon based waveguides," Opt. Exp. 16, 2676-2684 (2008).

2006

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).

R. W. Boyd, D. J. Gauthier, "Photonics: Transparency on an optical chip," Nature 441, 701-702 (2006).

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators ," Nature 440, 508-511 (2006).

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: The next chip-scale technology," Mater. Today 9, 20-27 (2006).

2005

M. Fleischhauer, A. Imamoglu, J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7 , 1-15 (2005).

2004

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd, "Coupled resonator induced transparency," Phys. Rev. A 69, 063804 (2004).

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).

2003

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics ," Nature 424, 824-830 (2003).

2002

P. Gay-Balmaz, O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929 -2935 (2002).

1972

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

J. Opt. Soc. Amer. A

I. Chremmos, "Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal," J. Opt. Soc. Amer. A 26, 2623-2633 (2009).

J. Appl. Phys.

P. Gay-Balmaz, O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929 -2935 (2002).

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: The next chip-scale technology," Mater. Today 9, 20-27 (2006).

Nano Lett.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett. 10, 1103-1107 (2010).

Nature

R. W. Boyd, D. J. Gauthier, "Photonics: Transparency on an optical chip," Nature 441, 701-702 (2006).

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics ," Nature 424, 824-830 (2003).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators ," Nature 440, 508-511 (2006).

New J. Phys.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7 , 1-15 (2005).

Opt. Exp.

K. Aydin, I. M. Pryce, H. A. Atwater, "Symmetry breaking and strong coupling in planar optical metamaterials," Opt. Exp. 18, 13407-13417 ( 2010).

K.-H. Wen, L.-S. Yan, W. Pan, B. Luo, Z. Guo, Y.-H. Guo, "A four-port plasmonic quasi-circulator based on metal-insulator-metal waveguides," Opt. Exp. 20, 28025-28032 ( 2012).

B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, N. P. Johnson, "Magnetic response of split ring resonators (SRRs) at visible frequencies," Opt. Exp. 18, 3210-3218 (2010).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Opt. Exp. 17, 5595-5605 (2009).

Z. H. Han, S. I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Exp. 19, 3251-3257 (2011).

S. I. Bozhevolnyi, J. Jung, "Scaling for gap plasmon based waveguides," Opt. Exp. 16, 2676-2684 (2008).

Q. Li, T. Wang, Y. K. Su, M. Yan, M. Qiu, "Coupled mode theory analysis of mode-splitting in coupled cavity system," Opt. Exp. 18, 8367-8382 (2010).

Opt. Lett.

Phys. Rev. A

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd, "Coupled resonator induced transparency," Phys. Rev. A 69, 063804 (2004).

Phys. Rev. B

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).

Phys. Rev. B

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

B. Kanté, A. de Lustrac, J. M. Lourtioz, "In-plane coupling and field enhancement in infrared metamaterial surfaces," Phys. Rev. B 80, 035108 (2009).

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Phys. Rev. B 80 , 153103 (2009 ).

Phys. Rev. Lett.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).

Phys. Rev. Lett.

R. D. Kekatpure, E. S. Barnard, W. Cai, M. L. Brongersma, "Phase-coupled plasmon induced transparency ," Phys. Rev. Lett. 104, 243902 (2010).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett. 102, 053901 (2009).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, " Plasmon-induced transparency in metamaterials," Phys. Rev. Lett. 101, 047401 (2008 ).

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).

Science

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).

Other

X. Zou, M. Li, W. Pan, L. Yan, J. Aza $\tilde{n}$ a, and J. Yao, “All-fiber optical filter with an ultra-narrow and rectangular spectral response,” Opt. Lett., vol. 38, no. 16, pp. 3096–3098, Aug. 2013..

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3470–3478, Sep. 2013..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.