Abstract

The direct patterning of hybrid-polymer microring resonators with minimal residual layers by UV-assisted nanoimprint lithography is reported. The proposed stamp-and-repeat technology requires no post-processing. The imprint polymer was applied by spin-coating as a 130–150 nm thin initial film for an optimized processing. The importance of the initial film thickness is discussed in detail. Aspect ratios of more than 5:1 were realized with 2 µm high ridge-waveguides and sub-400 nm coupling gaps on maximal 130 nm thin residual layers. The achieved ratio of structure height to residual layer thickness of 15.4 (2 µm versus 130 nm) was much larger than the typical values in high-resolution imprinting and superseded the removal of the residual layer completely. The resonators are thought as biosensor transducers. High quality devices with Q-factors up to 13 000 were produced with a minimal set of process steps.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription