Abstract

An analog joint source channel coding (JSCC) system is developed for wireless optical communications. Source symbols are mapped directly onto channel symbols using space filling curves and then a non-linear stretching function is used to reduce distortion. Different from digital systems, the proposed scheme does not require long block lengths to achieve good performance reducing the complexity of the decoder significantly. This paper focuses on intensity-modulated direct-detection (IM/DD) optical wireless systems. First, a theoretical analysis of the IM/DD wireless optical channel is presented and the prototype communication system designed to transmit data using analog JSCC is introduced. The nonlinearities of the real channel are studied and characterized. A novel technique to mitigate the channel nonlinearities is presented. The performance of the real system follows the simulations and closely approximates the theoretical limits. The proposed system is then used for image transmission by first taking samples of a set of images using compressive sensing and then encoding the measurements using analog JSCC. Both simulation and experimental results are shown.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. E. Shannon, "A mathematical theory of communication ," Bell Syst. Technol. J. 27, 379-423 (1948).
  2. M. Gastpar, B. Rimoldi, M. Vetterli, "To code, or not to code: Lossy source-channel communication revisited," IEEE Trans. Inf. Theory 49, 1147-1158 (2003).
  3. A. Fuldseth, T. Ramstad, "Bandwidth compression for continuous amplitude channels based on vector approximation to a continuous subset of the source signal space," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (1997) pp. 3093- 3096.
  4. T. Ramstad, "Shannon mappings for robust communication ," Telektronikk 98, 114-128 (2002).
  5. S. Chung, “On the construction of some capacity-approaching coding schemes,” Ph.D. Dissertation, Massachusets Inst. Technol., Cambridge, MA, USA, 2000..
  6. Y. Hu, J. Garcia-Frias, M. Lamarca, "Analog joint source-channel coding using non-linear curves and mmse decoding," IEEE Trans. Commun. 59, 3016-3026 (2011).
  7. O. Freznedo, F. Vazquez-Araujo, M. Gonzales-Lopez, J. Garcia-Frias, "Comparison between analog joint source-channel coded and digital bicm systems," Proc. IEEE Int. Conf. Commun. ( 2011) pp. 1-5.
  8. A. Seeds, K. Williams, "Microwave photonics," J. Lightw. Technol. 24 , 4628-4641 (2007 ).
  9. A. Seeds, K. Williams, "Scaling optical communications for the next decade and beyond," Bell Labs Technol. J. 14, 3-9 (2010).
  10. K. Kikuchi, "History of coherent optical communication and challenges for the future," Bell Labs Technol. J. IEEE 107 -108 (2008).
  11. F. Hekland, G. Oien, and T. Ramstad, “Using 2:1 Shannon mapping for joint source-channel coding,” in Proc. Data Compress. Conf., Mar. 2005. pp. 1--6.
  12. Y. Hu, Z. Wang, J. Garcia-Frias, G. R. Arce, "Non-linear coding for improved performance in compressive sensing ," Proc. IEEE 43rd Annu. Conf. Inf. Sci. Syst. (2009) pp. 18-22.
  13. I. Iglesias, B. Lu, J. Garcia-Frias, G. R. Arce, "Non-linear mappings for transmission of compressed sensing images ," Proc. 48th Annu. Allert. Conf. Commun., Contr., Comput. (2009 ) pp. 726-732.
  14. J. L. Paredes, G. R. Arce, "Compressive sensing reconstruction by weighted median regression estimates ," IEEE Trans. Signal Process. 59, 2585-2601 (2011).
  15. C. E. Shannon, "Communication in the presence of noise ," Proc. Inst. Radio. Eng. 37, 10-21 (1949).
  16. V. Kotel’nikov, The Theory of Optimum Noise Immunity ( McGraw-Hill, 1959).
  17. F. Hekland, T. Ramstad, "Optimal rate-constrained transcoding for a 2:1 bandwidth reducing shannon mapping," Proc. IEEE 7th Workshop Signal Process. Adv. Wireless Commun. (2007) pp. 1-5.
  18. F. Hekland, P. Floor, and T. Ramstad, “Shannon–Kotel’nikov mappings in joint source-channel coding,” IEEE Trans. Commun., vol. 57, no. 1, pp. 94–105, Jan. 2009..
  19. P. Floor, T. Ramstad, "Dimension reducing mappings in joint source-channel coding," Proc. IEEE Norwegian Signal Process. Symp. Workshop (2006) pp. 5-7.
  20. Y. Hu, J. Garcia-Frias, "Optimizing power allocation in analog joint source-channel coding," Proc. IEEE 43rd Annu. Conf. Inf. Sci. Syst. (2009) pp. 72-76.
  21. E. Akyol, K. Rose, T. Ramstad, "Optimal mappings for joint source channel coding," Proc. IEEE Inf. Theory Workshop (2010 ) pp. 1-5.
  22. E. Akyol, K. Rose, T. Ramstad, "Optimized analog mappings for distributed source-channel coding," Proc. IEEE Data Compress. Conf. (2010) pp. 159-168.
  23. S. Hranilovic, F. Kschischang, "Optical intensity-modulated direct detection channels: Signal space and lattice codes ," IEEE Trans. Inf. Theory 49, 1385-1399 (2003).
  24. J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85 , 263-298 (1997).
  25. O. Ndili, T. Ogunfunmi, "Achieving maximum possible download speed on adsl systems," Proc. IEEE Workshop Signal Process. Syst. (2007) pp. 407 -411.
  26. J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85 , 265-298 (1997).
  27. M. Katz, S. Shamai, "On the capacity-achieving distribution of the discrete-time noncoherent and partially coherent AWGN channels," IEEE Trans. Inf. Theory 50, 2257-2270 (2004 ).
  28. A. Mecozzi, M. Shtaif, "On the capacity of intensity modulated systems using optical amplifiers," IEEE Photon. Technol. Lett. 13, 1029-1031 (2001).
  29. K. Fagervik, A. S. Larssen, "Performance and complexity of low density parity check codes and turbo codes," Proc. IEEE Norwegian Signal Process. Symp. Workshop (2003 ).
  30. Z. Wang, G. R. Arce, "Variable density compressed sensing image sampling," IEEE Trans. Image Process. 9, 264-270 (2010).

2011

Y. Hu, J. Garcia-Frias, M. Lamarca, "Analog joint source-channel coding using non-linear curves and mmse decoding," IEEE Trans. Commun. 59, 3016-3026 (2011).

J. L. Paredes, G. R. Arce, "Compressive sensing reconstruction by weighted median regression estimates ," IEEE Trans. Signal Process. 59, 2585-2601 (2011).

2010

A. Seeds, K. Williams, "Scaling optical communications for the next decade and beyond," Bell Labs Technol. J. 14, 3-9 (2010).

Z. Wang, G. R. Arce, "Variable density compressed sensing image sampling," IEEE Trans. Image Process. 9, 264-270 (2010).

2008

K. Kikuchi, "History of coherent optical communication and challenges for the future," Bell Labs Technol. J. IEEE 107 -108 (2008).

2003

M. Gastpar, B. Rimoldi, M. Vetterli, "To code, or not to code: Lossy source-channel communication revisited," IEEE Trans. Inf. Theory 49, 1147-1158 (2003).

S. Hranilovic, F. Kschischang, "Optical intensity-modulated direct detection channels: Signal space and lattice codes ," IEEE Trans. Inf. Theory 49, 1385-1399 (2003).

2002

T. Ramstad, "Shannon mappings for robust communication ," Telektronikk 98, 114-128 (2002).

2001

A. Mecozzi, M. Shtaif, "On the capacity of intensity modulated systems using optical amplifiers," IEEE Photon. Technol. Lett. 13, 1029-1031 (2001).

1997

J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85 , 263-298 (1997).

J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85 , 265-298 (1997).

1949

C. E. Shannon, "Communication in the presence of noise ," Proc. Inst. Radio. Eng. 37, 10-21 (1949).

1948

C. E. Shannon, "A mathematical theory of communication ," Bell Syst. Technol. J. 27, 379-423 (1948).

Bell Labs Technol. J.

A. Seeds, K. Williams, "Scaling optical communications for the next decade and beyond," Bell Labs Technol. J. 14, 3-9 (2010).

Bell Labs Technol. J. IEEE

K. Kikuchi, "History of coherent optical communication and challenges for the future," Bell Labs Technol. J. IEEE 107 -108 (2008).

Bell Syst. Technol. J.

C. E. Shannon, "A mathematical theory of communication ," Bell Syst. Technol. J. 27, 379-423 (1948).

IEEE Photon. Technol. Lett.

A. Mecozzi, M. Shtaif, "On the capacity of intensity modulated systems using optical amplifiers," IEEE Photon. Technol. Lett. 13, 1029-1031 (2001).

IEEE Trans. Commun.

Y. Hu, J. Garcia-Frias, M. Lamarca, "Analog joint source-channel coding using non-linear curves and mmse decoding," IEEE Trans. Commun. 59, 3016-3026 (2011).

IEEE Trans. Image Process.

Z. Wang, G. R. Arce, "Variable density compressed sensing image sampling," IEEE Trans. Image Process. 9, 264-270 (2010).

IEEE Trans. Inf. Theory

M. Katz, S. Shamai, "On the capacity-achieving distribution of the discrete-time noncoherent and partially coherent AWGN channels," IEEE Trans. Inf. Theory 50, 2257-2270 (2004 ).

S. Hranilovic, F. Kschischang, "Optical intensity-modulated direct detection channels: Signal space and lattice codes ," IEEE Trans. Inf. Theory 49, 1385-1399 (2003).

M. Gastpar, B. Rimoldi, M. Vetterli, "To code, or not to code: Lossy source-channel communication revisited," IEEE Trans. Inf. Theory 49, 1147-1158 (2003).

IEEE Trans. Signal Process.

J. L. Paredes, G. R. Arce, "Compressive sensing reconstruction by weighted median regression estimates ," IEEE Trans. Signal Process. 59, 2585-2601 (2011).

J. Lightw. Technol.

A. Seeds, K. Williams, "Microwave photonics," J. Lightw. Technol. 24 , 4628-4641 (2007 ).

Proc. IEEE

J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85 , 265-298 (1997).

J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85 , 263-298 (1997).

Proc. Inst. Radio. Eng.

C. E. Shannon, "Communication in the presence of noise ," Proc. Inst. Radio. Eng. 37, 10-21 (1949).

Telektronikk

T. Ramstad, "Shannon mappings for robust communication ," Telektronikk 98, 114-128 (2002).

Other

S. Chung, “On the construction of some capacity-approaching coding schemes,” Ph.D. Dissertation, Massachusets Inst. Technol., Cambridge, MA, USA, 2000..

A. Fuldseth, T. Ramstad, "Bandwidth compression for continuous amplitude channels based on vector approximation to a continuous subset of the source signal space," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (1997) pp. 3093- 3096.

F. Hekland, G. Oien, and T. Ramstad, “Using 2:1 Shannon mapping for joint source-channel coding,” in Proc. Data Compress. Conf., Mar. 2005. pp. 1--6.

Y. Hu, Z. Wang, J. Garcia-Frias, G. R. Arce, "Non-linear coding for improved performance in compressive sensing ," Proc. IEEE 43rd Annu. Conf. Inf. Sci. Syst. (2009) pp. 18-22.

I. Iglesias, B. Lu, J. Garcia-Frias, G. R. Arce, "Non-linear mappings for transmission of compressed sensing images ," Proc. 48th Annu. Allert. Conf. Commun., Contr., Comput. (2009 ) pp. 726-732.

V. Kotel’nikov, The Theory of Optimum Noise Immunity ( McGraw-Hill, 1959).

F. Hekland, T. Ramstad, "Optimal rate-constrained transcoding for a 2:1 bandwidth reducing shannon mapping," Proc. IEEE 7th Workshop Signal Process. Adv. Wireless Commun. (2007) pp. 1-5.

F. Hekland, P. Floor, and T. Ramstad, “Shannon–Kotel’nikov mappings in joint source-channel coding,” IEEE Trans. Commun., vol. 57, no. 1, pp. 94–105, Jan. 2009..

P. Floor, T. Ramstad, "Dimension reducing mappings in joint source-channel coding," Proc. IEEE Norwegian Signal Process. Symp. Workshop (2006) pp. 5-7.

Y. Hu, J. Garcia-Frias, "Optimizing power allocation in analog joint source-channel coding," Proc. IEEE 43rd Annu. Conf. Inf. Sci. Syst. (2009) pp. 72-76.

E. Akyol, K. Rose, T. Ramstad, "Optimal mappings for joint source channel coding," Proc. IEEE Inf. Theory Workshop (2010 ) pp. 1-5.

E. Akyol, K. Rose, T. Ramstad, "Optimized analog mappings for distributed source-channel coding," Proc. IEEE Data Compress. Conf. (2010) pp. 159-168.

O. Ndili, T. Ogunfunmi, "Achieving maximum possible download speed on adsl systems," Proc. IEEE Workshop Signal Process. Syst. (2007) pp. 407 -411.

O. Freznedo, F. Vazquez-Araujo, M. Gonzales-Lopez, J. Garcia-Frias, "Comparison between analog joint source-channel coded and digital bicm systems," Proc. IEEE Int. Conf. Commun. ( 2011) pp. 1-5.

K. Fagervik, A. S. Larssen, "Performance and complexity of low density parity check codes and turbo codes," Proc. IEEE Norwegian Signal Process. Symp. Workshop (2003 ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.