Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 6,
  • pp. 1246-1257
  • (2014)

Four-dimensional Rotations in Coherent Optical Communications

Not Accessible

Your library or personal account may give you access

Abstract

To model electromagnetic wave propagation for coherent communications without polarization dependent losses, the unitary $2 \times 2$ Jones transfer matrix formalism is typically used. In this study, we propose an alternative formalism to describe such transformations based on rotations in four-dimensional (4d) Euclidean space. This formalism is usually more attractive from a communication theoretical perspective, since decisions and symbol errors can be related to geometric concepts such as Euclidean distances between points and decision boundaries. Since 4d rotations is a richer description than the conventional Jones calculus, having six rather than four degrees of freedom (DOF), we propose an extension of the Jones calculus to handle all six DOF. In addition, we show that the two extra DOF in the 4d description represents transformations that are nonphysical for propagating photons, since they does not obey the fundamental quantum mechanical boson commutation relations. Finally, we exemplify on how the nonphysical rotations can change the polarization-phase degeneracy of well-known constellations such as single-polarization QPSK, polarization-multiplexed (PM-)QPSK and polarization-switched (PS-) QPSK. For example, we show how PM-QPSK, which is well known to consist of four polarization states each having four-fold phase degeneracy, can be represented as eight states of polarizations, each with binary phase degeneracy.

© 2014 IEEE

PDF Article
More Like This
High-dimensional modulation for coherent optical communications systems

David S. Millar, Toshiaki Koike-Akino, Sercan Ö. Arık, Keisuke Kojima, Kieran Parsons, Tsuyoshi Yoshida, and Takashi Sugihara
Opt. Express 22(7) 8798-8812 (2014)

Multi-dimensional permutation-modulation format for coherent optical communications

Shota Ishimura and Kazuro Kikuchi
Opt. Express 23(12) 15587-15597 (2015)

Fault-tolerant four-dimensional constellation for coherent optical transmission systems

Jingtian Liu, Élie Awwad, and Yves Jaouën
Opt. Express 31(26) 43449-43461 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved