Abstract

Metamaterial-based perfect absorbers utilize the intrinsic loss, with the aid of appropriate structural design (completely suppress transmission and reflection), to achieve near unity absorption at a certain frequency. The frequency of the reported absorbers is usually fixed and operates over a limited bandwidth, which greatly hampers their practical applications. Active or dynamic control over their resonance frequency is urgently necessary. Herein, we propose a novel approach for efficient tuning of the frequency of the absorber by shifting the movable part of the composite structure composed of the fixed and movable parts. The concept is rather general and applicable to various absorbers as long as the sandwich structure design is valid. The demonstrated continuous tuning of metamaterial absorber can find practical applications in detection, imaging, spectroscopy and selective thermal emitters.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena ," IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999 ).
  2. B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, W. Q. Huang, "A simple nested metamaterial structure with enhanced bandwidth performance," Opt. Commun. 303, 13-14 (2013).
  3. J. Yang, C. Sauvan, H. T. Liu, P. Lalanne, "Theory of fishnet negative-index optical metamaterials," Phys. Rev. Lett. 107, 043903 (2011).
  4. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
  5. N. Liu, H. Liu, S. Zhu, H. Giessen, "Stereometamaterials," Nat. Photon. 3, 157-162 (2009).
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
  7. D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, E. I. Simakov, "Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers," Phys. Rev. B 82, 205117 (2010).
  8. Z. Lu, M. Zhao, P. Xie, L. Wu, Y. Yu, P. Zhang, Z. Yang, "Reflection properties of metallic helical metamaterials," J. Lightw. Technol. 30, 3050-3054 (2012).
  9. Z. Lu, M. Zhao, Z. Yang, L. Wu, P. Zhang, "Helical metamaterial absorbers: Broadband and polarization-independent in optical region," J. Lightw. Technol. 31, 2762- 2768 (2013).
  10. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, "A dual band terahertz metamaterial absorber ," J. Phys. D 43, 225102 (2010).
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett 10, 2342-2348 (2010).
  12. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett. 36, 1524 -1526 (2011).
  13. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, "A terahertz polarization insensitive dual band metamaterial absorber," Opt. Lett. 36, 945-947 (2011).
  14. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Exp. 19, 9401-9407 (2011).
  15. Y. Ye, Y. Jin, S. He, "Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime," J. Opt. Soc. Amer. B 27, 498-503 (2010 ).
  16. J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. S. Cumming, " Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett. 36, 3476-3478 ( 2011).
  17. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photo. Techno. Lett. 26 , 111-114 (2014).
  18. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, X. Zhai, "A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber," Appl. Phys. A ( 2013) doi: 10.1007/s00339-013-8158-5.
  19. F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, S. He, "Ultra-broadband microwave metamaterial absorber ," Appl. Phys. Lett. 100, 103506 (2012).
  20. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett. 99, 253101 (2011 ).
  21. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, Y. C. Chang, "Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays," Opt. Exp. 20, 10376-10381 (2012).
  22. Q. Ye, H. Lin, X. Chen, and H. L. Yang, “A tunable metamaterial absorber made by micro-gaps structures,” in Proc. Cross Strait Quad-Regional Radio Sci. Wireless Technol. Conf., 2011, vol. 234, p. 1..
  23. X. Li, Q. Feng, X. Luo, and M. Hong, “Frequency controllable metamaterial absorber by an added dielectric layer,” in Proc. AIP Conf., p. 1328..
  24. B. Zhu, C. Huang, Y. Feng, J. Zhao, T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," PIER B 24 , 121-129 (2010).
  25. Y. Huang, Y. Tian, G. Wen, W. Zhu, "Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration," J. Opt. 15, 055104 (2013).
  26. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, Y. P. Lee, "Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials," Appl. Phys. Lett. 102, 081122 (2013).
  27. C. M. Watts, X. Liu, W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater. 24, OP98 -OP120 (2012).
  28. Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, X. Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear," Opt. Exp. 19, 10193-10198 (2011).
  29. X. Shen, T. J. Cui, " Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber," J. Opt. 14, 114012 ( 2012).
  30. B. Zhu, Y. Feng, J. Zhao, C. Huang, T. Jiang, "Switchable metamaterial reflector/absorber for different polarized electromagnetic waves," Appl. Phys. Lett. 97, 051906 (2010).
  31. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, P.-X. Zhang, "A tunable hybrid metamaterial absorber based on vanadium oxide films," J. Phys. D 45, 235106 (2012).
  32. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, T. J. Huang, "Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array," Appl. Phys. Lett. 100, 053119 (2012 ).
  33. D. Shrekenhamer, W.-C. Chen, W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett. 110, 177403 (2013).
  34. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, " Negative index materials using simple short wire pairs," Phys. Rev. B 73, 041101(R) (2006).
  35. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, "Switchable magnetic metamaterials using micromachining processes ," Adv. Mater. 23, 1792-1796 (2011).
  36. Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, D. L. kwong, "A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators," Adv. Fun. Mater. 21, 3589-3594 ( 2011).
  37. N. Liu, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmonic building for magnetic molecules in three-dimensional optical metamaterials ," Adv. Matter. 20, 3859-3865 (2008).
  38. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Matter. 19, 3628 -3632 (2007).
  39. C. S. R. Kaipa, A. B. Yakovlev, M. G. Silveirinha, "Characterization of negative refraction with multilayered mushroom-type metamaterials at microwaves," J. Appl. Phys. 109, 044901 (2011).
  40. T. M. Floyd, Principles of Electric Circuits (Prentice-Hall, 2010).
  41. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett. 95, 241111 (2009).
  42. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, "Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78 , 241103(R) (2008).
  43. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. H. Luo, A. J. Taylor, H. T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Opt. Lett. 37, 154-156 (2012).

2014

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photo. Techno. Lett. 26 , 111-114 (2014).

2013

Y. Huang, Y. Tian, G. Wen, W. Zhu, "Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration," J. Opt. 15, 055104 (2013).

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, Y. P. Lee, "Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials," Appl. Phys. Lett. 102, 081122 (2013).

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, W. Q. Huang, "A simple nested metamaterial structure with enhanced bandwidth performance," Opt. Commun. 303, 13-14 (2013).

Z. Lu, M. Zhao, Z. Yang, L. Wu, P. Zhang, "Helical metamaterial absorbers: Broadband and polarization-independent in optical region," J. Lightw. Technol. 31, 2762- 2768 (2013).

D. Shrekenhamer, W.-C. Chen, W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett. 110, 177403 (2013).

2012

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, P.-X. Zhang, "A tunable hybrid metamaterial absorber based on vanadium oxide films," J. Phys. D 45, 235106 (2012).

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. H. Luo, A. J. Taylor, H. T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Opt. Lett. 37, 154-156 (2012).

Z. Lu, M. Zhao, P. Xie, L. Wu, Y. Yu, P. Zhang, Z. Yang, "Reflection properties of metallic helical metamaterials," J. Lightw. Technol. 30, 3050-3054 (2012).

C. M. Watts, X. Liu, W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater. 24, OP98 -OP120 (2012).

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, S. He, "Ultra-broadband microwave metamaterial absorber ," Appl. Phys. Lett. 100, 103506 (2012).

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, Y. C. Chang, "Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays," Opt. Exp. 20, 10376-10381 (2012).

2011

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, X. Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear," Opt. Exp. 19, 10193-10198 (2011).

J. Yang, C. Sauvan, H. T. Liu, P. Lalanne, "Theory of fishnet negative-index optical metamaterials," Phys. Rev. Lett. 107, 043903 (2011).

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett. 36, 1524 -1526 (2011).

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, "A terahertz polarization insensitive dual band metamaterial absorber," Opt. Lett. 36, 945-947 (2011).

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Exp. 19, 9401-9407 (2011).

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, "Switchable magnetic metamaterials using micromachining processes ," Adv. Mater. 23, 1792-1796 (2011).

C. S. R. Kaipa, A. B. Yakovlev, M. G. Silveirinha, "Characterization of negative refraction with multilayered mushroom-type metamaterials at microwaves," J. Appl. Phys. 109, 044901 (2011).

2010

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, E. I. Simakov, "Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers," Phys. Rev. B 82, 205117 (2010).

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, "A dual band terahertz metamaterial absorber ," J. Phys. D 43, 225102 (2010).

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett 10, 2342-2348 (2010).

B. Zhu, Y. Feng, J. Zhao, C. Huang, T. Jiang, "Switchable metamaterial reflector/absorber for different polarized electromagnetic waves," Appl. Phys. Lett. 97, 051906 (2010).

B. Zhu, C. Huang, Y. Feng, J. Zhao, T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," PIER B 24 , 121-129 (2010).

2009

N. Liu, H. Liu, S. Zhu, H. Giessen, "Stereometamaterials," Nat. Photon. 3, 157-162 (2009).

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett. 95, 241111 (2009).

2008

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, "Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78 , 241103(R) (2008).

N. Liu, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmonic building for magnetic molecules in three-dimensional optical metamaterials ," Adv. Matter. 20, 3859-3865 (2008).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).

2007

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Matter. 19, 3628 -3632 (2007).

2006

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, " Negative index materials using simple short wire pairs," Phys. Rev. B 73, 041101(R) (2006).

2005

Appl. Phys. Lett.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett. 99, 253101 (2011 ).

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, T. J. Huang, "Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array," Appl. Phys. Lett. 100, 053119 (2012 ).

Nano Lett

N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett 10, 2342-2348 (2010).

Adv. Fun. Mater.

Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, D. L. kwong, "A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators," Adv. Fun. Mater. 21, 3589-3594 ( 2011).

Adv. Mater.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, "Switchable magnetic metamaterials using micromachining processes ," Adv. Mater. 23, 1792-1796 (2011).

C. M. Watts, X. Liu, W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater. 24, OP98 -OP120 (2012).

Adv. Matter.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmonic building for magnetic molecules in three-dimensional optical metamaterials ," Adv. Matter. 20, 3859-3865 (2008).

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Matter. 19, 3628 -3632 (2007).

Appl. Phys. Lett.

B. Zhu, Y. Feng, J. Zhao, C. Huang, T. Jiang, "Switchable metamaterial reflector/absorber for different polarized electromagnetic waves," Appl. Phys. Lett. 97, 051906 (2010).

Appl. Phys. Lett.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett. 95, 241111 (2009).

Appl. Phys. A

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, X. Zhai, "A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber," Appl. Phys. A ( 2013) doi: 10.1007/s00339-013-8158-5.

Appl. Phys. Lett.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, S. He, "Ultra-broadband microwave metamaterial absorber ," Appl. Phys. Lett. 100, 103506 (2012).

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, Y. P. Lee, "Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials," Appl. Phys. Lett. 102, 081122 (2013).

IEEE Photo. Techno. Lett.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photo. Techno. Lett. 26 , 111-114 (2014).

IEEE Trans. Microw. Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena ," IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999 ).

J. Appl. Phys.

C. S. R. Kaipa, A. B. Yakovlev, M. G. Silveirinha, "Characterization of negative refraction with multilayered mushroom-type metamaterials at microwaves," J. Appl. Phys. 109, 044901 (2011).

J. Lightw. Technol.

Z. Lu, M. Zhao, Z. Yang, L. Wu, P. Zhang, "Helical metamaterial absorbers: Broadband and polarization-independent in optical region," J. Lightw. Technol. 31, 2762- 2768 (2013).

J. Lightw. Technol.

Z. Lu, M. Zhao, P. Xie, L. Wu, Y. Yu, P. Zhang, Z. Yang, "Reflection properties of metallic helical metamaterials," J. Lightw. Technol. 30, 3050-3054 (2012).

J. Opt.

Y. Huang, Y. Tian, G. Wen, W. Zhu, "Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration," J. Opt. 15, 055104 (2013).

X. Shen, T. J. Cui, " Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber," J. Opt. 14, 114012 ( 2012).

J. Opt. Soc. Amer. B

Y. Ye, Y. Jin, S. He, "Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime," J. Opt. Soc. Amer. B 27, 498-503 (2010 ).

J. Phys. D

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, "A dual band terahertz metamaterial absorber ," J. Phys. D 43, 225102 (2010).

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, P.-X. Zhang, "A tunable hybrid metamaterial absorber based on vanadium oxide films," J. Phys. D 45, 235106 (2012).

Nat. Photon.

N. Liu, H. Liu, S. Zhu, H. Giessen, "Stereometamaterials," Nat. Photon. 3, 157-162 (2009).

Opt. Commun.

B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, W. Q. Huang, "A simple nested metamaterial structure with enhanced bandwidth performance," Opt. Commun. 303, 13-14 (2013).

Opt. Exp.

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Exp. 19, 9401-9407 (2011).

Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, X. Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear," Opt. Exp. 19, 10193-10198 (2011).

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, Y. C. Chang, "Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays," Opt. Exp. 20, 10376-10381 (2012).

Opt. Lett.

J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. S. Cumming, " Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett. 36, 3476-3478 ( 2011).

Opt. Lett.

J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett. 36, 1524 -1526 (2011).

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, "A terahertz polarization insensitive dual band metamaterial absorber," Opt. Lett. 36, 945-947 (2011).

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. H. Luo, A. J. Taylor, H. T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Opt. Lett. 37, 154-156 (2012).

Phys. Rev. B

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, "Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78 , 241103(R) (2008).

D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, E. I. Simakov, "Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers," Phys. Rev. B 82, 205117 (2010).

J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, " Negative index materials using simple short wire pairs," Phys. Rev. B 73, 041101(R) (2006).

Phys. Rev. Lett.

D. Shrekenhamer, W.-C. Chen, W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett. 110, 177403 (2013).

J. Yang, C. Sauvan, H. T. Liu, P. Lalanne, "Theory of fishnet negative-index optical metamaterials," Phys. Rev. Lett. 107, 043903 (2011).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).

PIER B

B. Zhu, C. Huang, Y. Feng, J. Zhao, T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," PIER B 24 , 121-129 (2010).

Other

Q. Ye, H. Lin, X. Chen, and H. L. Yang, “A tunable metamaterial absorber made by micro-gaps structures,” in Proc. Cross Strait Quad-Regional Radio Sci. Wireless Technol. Conf., 2011, vol. 234, p. 1..

X. Li, Q. Feng, X. Luo, and M. Hong, “Frequency controllable metamaterial absorber by an added dielectric layer,” in Proc. AIP Conf., p. 1328..

T. M. Floyd, Principles of Electric Circuits (Prentice-Hall, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.