Abstract

Passive optical networks (PONs) are regarded as a promising solution for the broadband bandwidth bottleneck problem. However, due to their passive nature, legacy TDM-PONs are limited by their inflexible power distribution, while future WDM-PONs are restricted by their static wavelength allocation. To mitigate these limitations, we propose QPAR, a Quasi-Passive Reconfigurable node, which provides flexible power and bandwidth allocation, and enables a graceful upgrade from TDM-PON to WDM-PON. Due to its quasi-passive nature, QPAR only consumes power during reconfiguration. Simulation results show that QPAR can increase the number of users, extend the reach, and balance the traffic load in the network compared with legacy PONs. QPAR can be implemented using either discrete or integrated components. We demonstrate an experimental QPAR using two different optical latching switches based on micro-electro-mechanical systems and magneto-optic materials. Lastly, we experimentally investigate QPAR performances.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. KEYMILE White Paper, “AON versus PON—A comparison of two optical access network technologies and the different impact on operations,” KEYMILE International GmbH, Hannover, Germany, 2008..
  2. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, B. Mukherjee, "Wavelength-division multiplexed passive optical network (WDM-PON) technologies for broadband access: A review [invited]," J. Opt. Netw. 4, 737-758 (2005).
  3. G. Das, B. Lannoo, D. Colle, M. Pickavet, P. Demeester, "A hybrid WDM/TDM PON architecture using wavelength selective switches," Proc. IEEE 4th Int. Symp. Adv. Netw. Telecommun. Syst. (2010) pp. 52-54.
  4. L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, S. Wong, " Next generation optical access networks," IEEE J. Lightw. Tech. 25 , 3428-3442 (2007).
  5. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, Y. Ma, "Time-and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2)," J. Lightw. Technol. 31 , 587-593 (2013).
  6. S. H. Yen, S. W. Wong, S. Das, N. Cheng, J. Cho, S. Yamashita, O. Solgaard, L. G. Kazovsky, "Photonic components for future fiber access network," IEEE J. Sel. Areas Commun. 28 , 928-935 (2010).
  7. Y. Bi, J. Jin, L. G. Kazovsky, "Quasi-passive reconfigurable optical node: First experimental demonstration," Proc. Conf. Lasers Electro-Opt. (2012, Paper CTh1 H.5).
  8. H. Song, B.-w. Kim, B. Mukherjee, "Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms," IEEE Commun. Surveys Tuts. 12, 112-123 (2010).
  9. W. Noell, P. A. Clerc, F. Duport, C. Marxer, N. de Rooij, "Novel process-insensitive latchable 2 × 2 optical cross connector for single- and multimode optical MEMS fiber switches," Proc. IEEE/LEOS Int. Conf. Opt. MEMS (2003) pp. 49-50.
  10. R. Bahuguna, M. Mina, J. Tioh, R. J. Weber, "Magneto-optic-based fiber switch for optical communications," IEEE Trans. Magn. 42, 3099 -3101 (2006).
  11. Z.-H. Weng, J.-J. Ruan, S.-H. Lin, Z.-M. Chen, "Fast magneto-optic switch based on nanosecond pulses," Opt. Eng. 50, 095001 (2011).
  12. K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, Y. Nishi, "Bipolar resistive switching in polycrystalline TiO $_{2}$ films," Appl. Phys. Lett. 90, 113501-1-113501-3 (2007).
  13. S. H. Yen “Reconfigurable technology for future optical access networks,” Ph.D. thesis, Stanford Univ., Stanford, CA, USA..
  14. G. I. Papadimitriou, C. Papazoglou, A. S Pomportsis, "Optical switching: Switch fabrics, techniques, and architectures," J. Lightw. Technol. 21, 384-405 (2003).
  15. Optical latching switch (OLS) data sheets from Sercalo, Ltd., [Online]. Available: http://www.sercalo.com/?navig = 27.
  16. H. Miyakawa, Y. Tanaka, T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43 , 1379-1389 (2004).
  17. A. Mathur, M. Ziari, V. Dominic, "Record 1 watt fiber-coupled-power 1480 nm diode laser pump for Raman and erbium doped fiber amplification," Proc. Opt. Fiber Commun. Conf. (2000) pp. 211-213.
  18. J. Jin, Y. Bi, M. D. Leenheer, L. G. Kazovsky, J. Perin, M. R. N. Ribeiro, "Quasi-passive and reconfigurable optical node: Implementations with discrete latching switches," Proc. IEEE Photon. Conf. (2012) pp. 917-918.
  19. Y. S. Didosyan, H. Hauser, W. Fiala, J. Nicolics, W. Toriser, "Latching type optical switch," J. Appl. Phys. 91 , 7000-7002 (2002).

2013 (1)

Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, Y. Ma, "Time-and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2)," J. Lightw. Technol. 31 , 587-593 (2013).

2011 (1)

Z.-H. Weng, J.-J. Ruan, S.-H. Lin, Z.-M. Chen, "Fast magneto-optic switch based on nanosecond pulses," Opt. Eng. 50, 095001 (2011).

2010 (2)

S. H. Yen, S. W. Wong, S. Das, N. Cheng, J. Cho, S. Yamashita, O. Solgaard, L. G. Kazovsky, "Photonic components for future fiber access network," IEEE J. Sel. Areas Commun. 28 , 928-935 (2010).

H. Song, B.-w. Kim, B. Mukherjee, "Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms," IEEE Commun. Surveys Tuts. 12, 112-123 (2010).

2007 (2)

K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, Y. Nishi, "Bipolar resistive switching in polycrystalline TiO $_{2}$ films," Appl. Phys. Lett. 90, 113501-1-113501-3 (2007).

L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, S. Wong, " Next generation optical access networks," IEEE J. Lightw. Tech. 25 , 3428-3442 (2007).

2006 (1)

R. Bahuguna, M. Mina, J. Tioh, R. J. Weber, "Magneto-optic-based fiber switch for optical communications," IEEE Trans. Magn. 42, 3099 -3101 (2006).

2005 (1)

2004 (1)

H. Miyakawa, Y. Tanaka, T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43 , 1379-1389 (2004).

2003 (1)

G. I. Papadimitriou, C. Papazoglou, A. S Pomportsis, "Optical switching: Switch fabrics, techniques, and architectures," J. Lightw. Technol. 21, 384-405 (2003).

2002 (1)

Y. S. Didosyan, H. Hauser, W. Fiala, J. Nicolics, W. Toriser, "Latching type optical switch," J. Appl. Phys. 91 , 7000-7002 (2002).

IEEE Commun. Surveys Tuts. (1)

H. Song, B.-w. Kim, B. Mukherjee, "Long-reach optical access networks: A survey of research challenges, demonstrations, and bandwidth assignment mechanisms," IEEE Commun. Surveys Tuts. 12, 112-123 (2010).

Opt. Eng. (1)

Z.-H. Weng, J.-J. Ruan, S.-H. Lin, Z.-M. Chen, "Fast magneto-optic switch based on nanosecond pulses," Opt. Eng. 50, 095001 (2011).

Appl. Opt. (1)

H. Miyakawa, Y. Tanaka, T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43 , 1379-1389 (2004).

Appl. Phys. Lett. (1)

K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, Y. Nishi, "Bipolar resistive switching in polycrystalline TiO $_{2}$ films," Appl. Phys. Lett. 90, 113501-1-113501-3 (2007).

IEEE J. Lightw. Tech. (1)

L. G. Kazovsky, W. Shaw, D. Gutierrez, N. Cheng, S. Wong, " Next generation optical access networks," IEEE J. Lightw. Tech. 25 , 3428-3442 (2007).

IEEE J. Sel. Areas Commun. (1)

S. H. Yen, S. W. Wong, S. Das, N. Cheng, J. Cho, S. Yamashita, O. Solgaard, L. G. Kazovsky, "Photonic components for future fiber access network," IEEE J. Sel. Areas Commun. 28 , 928-935 (2010).

IEEE Trans. Magn. (1)

R. Bahuguna, M. Mina, J. Tioh, R. J. Weber, "Magneto-optic-based fiber switch for optical communications," IEEE Trans. Magn. 42, 3099 -3101 (2006).

J. Appl. Phys. (1)

Y. S. Didosyan, H. Hauser, W. Fiala, J. Nicolics, W. Toriser, "Latching type optical switch," J. Appl. Phys. 91 , 7000-7002 (2002).

J. Lightw. Technol. (2)

G. I. Papadimitriou, C. Papazoglou, A. S Pomportsis, "Optical switching: Switch fabrics, techniques, and architectures," J. Lightw. Technol. 21, 384-405 (2003).

Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, Y. Ma, "Time-and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2)," J. Lightw. Technol. 31 , 587-593 (2013).

J. Opt. Netw. (1)

Other (8)

G. Das, B. Lannoo, D. Colle, M. Pickavet, P. Demeester, "A hybrid WDM/TDM PON architecture using wavelength selective switches," Proc. IEEE 4th Int. Symp. Adv. Netw. Telecommun. Syst. (2010) pp. 52-54.

Y. Bi, J. Jin, L. G. Kazovsky, "Quasi-passive reconfigurable optical node: First experimental demonstration," Proc. Conf. Lasers Electro-Opt. (2012, Paper CTh1 H.5).

W. Noell, P. A. Clerc, F. Duport, C. Marxer, N. de Rooij, "Novel process-insensitive latchable 2 × 2 optical cross connector for single- and multimode optical MEMS fiber switches," Proc. IEEE/LEOS Int. Conf. Opt. MEMS (2003) pp. 49-50.

Optical latching switch (OLS) data sheets from Sercalo, Ltd., [Online]. Available: http://www.sercalo.com/?navig = 27.

A. Mathur, M. Ziari, V. Dominic, "Record 1 watt fiber-coupled-power 1480 nm diode laser pump for Raman and erbium doped fiber amplification," Proc. Opt. Fiber Commun. Conf. (2000) pp. 211-213.

J. Jin, Y. Bi, M. D. Leenheer, L. G. Kazovsky, J. Perin, M. R. N. Ribeiro, "Quasi-passive and reconfigurable optical node: Implementations with discrete latching switches," Proc. IEEE Photon. Conf. (2012) pp. 917-918.

KEYMILE White Paper, “AON versus PON—A comparison of two optical access network technologies and the different impact on operations,” KEYMILE International GmbH, Hannover, Germany, 2008..

S. H. Yen “Reconfigurable technology for future optical access networks,” Ph.D. thesis, Stanford Univ., Stanford, CA, USA..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.