Abstract

The lower limit of timing jitter due to optical and thermal noise is derived for the transmission of pulses as a clock signal. Clock distribution networks are analyzed in silicon photonics in providing pulse trains to electronic circuits. Two photon absorption and free carrier effects in silicon waveguides define maximum output power of the clock distribution network in dependence on pulsewidth and pulse energy. Simulations show that multiple electronic circuits on a silicon chip can be synchronized by optical pulses with femtosecond precision.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription