Abstract

High-resolution spectrometers are nowadays achievable in compact devices using integrated optics. The approach developed here consists in obtaining a static interferogram by means of a Fresnel reflection at the waveguide output (Lippmann interference between forward and backward beams) and then sample the fringes by periodically etching the waveguide with transverse nanogrooves, that will collect a negligible part of the flux. We present the first SWIFTS-Lippmann interferometer in the near and mid-infrared, thanks to high form factor grooves obtained by focused ion beam in lithium niobate, which opens the way to electrooptic modulation of the interferogram and thus, sampling on-chip, without any moving part. Possible applications are high-resolution spectroscopy and accurate measurement of effective refractive index of a waveguide. A measurement of the effective group refractive index of the guided mode is presented.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription