Abstract

This paper reports an uncooled transmitter system using a digital super-mode (DS) distributed Bragg reflector (DBR) tunable laser, which is able to act as an athermal, wavelength agnostic transmitter suitable for wavelength division multiplexed (WDM) passive optical network (PON) applications. An open-loop laser current control algorithm is designed to compensate autonomously for wavelength drift, thus allowing constant operating wavelength to be achieved regardless of ambient temperature. An improved wavelength accuracy of ±3 GHz is achieved when using low bandwidth feedback from the central office using information from a centralized shared wavelength locker. The entire laser start-up, channel selection and subsequent wavelength control is autonomous and has been implemented on micro-controllers and field programmable gate arrays. We demonstrate a three channel WDM-PON system comprising an uncooled packaged DS-DBR laser in the presence of two neighboring interfering channels. Error free transmission over 40 km single mode fiber of 10 Gb/s externally modulated NRZ data, is achieved for each of 48 C-band channels on the 100 GHz ITU grid. Successful athermal operation is demonstrated by sweeping the ambient temperature of the laser from 15 to 70 °C with a maximum wavelength deviation for any channel of no more than 0.1 nm.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription