Abstract

Nonlinearity in p-i-n photodetectors leads to power generation at harmonics of the input frequency, limiting the performance of RF-photonic systems. We use one-dimensional and two-dimensional simulations of the drift-diffusion equations to determine the physical origin of the saturation in a simple heterojunction p-i-n photodetector at room temperature. Incomplete ionization, external loading, impact ionization, and the Franz–Keldysh effect are all included in the model. Impact ionization is the main source of nonlinearity at large reverse bias ( \$>\$ 10 V in the device that we simulated). The electron and hole current contributions to the second harmonic power were calculated. We find that impact ionization has a greater effect on the electrons than it does on the holes. We also find that the hole velocity saturates slowly with increasing reverse bias, and the hole current makes a large contribution to the harmonic power at 10 V. This result implies that decreasing the hole injection will decrease the harmonic power.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription