Abstract

Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics (MWP) can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated MWP. Here, we look at the potential of using nonlinear optical effects in a chip scale to enable RF signal processing with enhanced performance. We review a number of recent results in this field, with particular focus on the creation of frequency agile and high suppression microwave bandstop filters using on-chip stimulated Brillouin scattering. We also discuss the future prospect of nonlinear integrated MWP to enable a general purpose, programmable analog signal processor, as well as compact, high performance active microwave filters with enhanced energy efficiency.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription