Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 17,
  • pp. 3074-3080
  • (2014)

Efficient Plasmonic Transducer for Nanoscale Optical Energy Transfer in Heat-Assisted Magnetic Recording

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a near-field plasmonic transducer that efficiently transforms a dielectric waveguide mode into a suitable plasmon mode for nanoscale optical energy transfer into a magnetic recording medium, for the application of heat-assisted magnetic recording (HAMR). The proposed transducer is a tapered hybrid plasmon-dielectric waveguide that typically consists of two hybrid plasmon modes. Along the taper, one of the hybrid modes approaches cutoff, while the other approaches the short-range surface plasmon mode that couples optical energy well into the recording medium over a nanospot size of 28 nm by 38 nm, owing to its relatively uniform and strong longitudinal field component. The power coupled into the SRSP mode, at the transducer input, is about 62 $\%$ and this efficiency is preserved well along the length. This power in turn couples well into the recording medium with a maximum absorption efficiency of 7.87 $\%$ . The absorption efficiency is relatively broadband. Even with the inclusion of a magnetic pole 30 nm away from the transducer, the maximum absorption efficiency is 6.44 $\%$ . The proposed structure is tolerant to fabrication misalignments, since the metallic, gap and dielectric layers are all self-aligned. The high-efficiency, broadband nature and ease of fabrication, makes the proposed transducer highly suitable for HAMR applications, and possibly nanofocusing applications.

© 2014 IEEE

PDF Article
More Like This
Split ring resonator as a nanoscale optical transducer for heat-assisted magnetic recording

Anurup Datta, Zhou Zeng, and Xianfan Xu
Opt. Express 27(20) 28264-28278 (2019)

Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording

Nan Zhou, Edward C. Kinzel, and Xianfan Xu
Appl. Opt. 50(31) G42-G46 (2011)

Elliptical plasmonic near-field transducer and v-shape waveguide designs for heat assisted magnetic recording

Mugahid Ali, Frank Bello, Nicolás Abadía, Fumin Huang, and John Donegan
Opt. Continuum 1(7) 1529-1541 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved