Abstract

A novel concept is proposed for integrating optical wireless visible light communications with 3-D indoor positioning using a single transmitter and multiple tilted optical receivers. We modeled a channel link, which was based on the transmitter and receiver characteristic data obtained in this experiment. The proposed 3-D positioning algorithm is based on gain difference, which is a function of the angle of arrival and the received signal strength. Our demonstration shows that the proposed algorithm can determine accurate positions, including height, without intercell interference.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Gallagher, B. Li, A. Dempster, and C. Rizos, “A sector-based campus wide indoor positioning system,” in Proc. IEEE Int. Conf. Indoor Positioning Indoor Navigat., Zurich, Switzerland, 2010, pp. 1–8.
  2. J. Hightower and G. Borriello, “A survey and taxonomy of location system for ubiquitous computing,” IEEE Comput., vol. 34, no. 8, pp. 57–66, Aug.2001.
  3. P. Keikhosrokiani, N. Mustaffa, N. Zakaria, and M. I. Sarwar, “Wireless positioning techniques and location-based services: A literature review,” Multimedia and Ubiquitous Engineering. Dordrecht, The Netherlands:Springer, 2013, pp. 785–797.
  4. H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.
  5. S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.
  6. S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.
  7. S. Yang, E. Jung, and S. Han, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1834–1837, 2013.
  8. S. Yang, E. Jeong, and S. Han, “Indoor positioning based on received optical power difference by angle of arrival,” Electron. Lett., vol. 50, no. 1, pp. 49–51, 2014.
  9. K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.
  10. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.
  11. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., San Diego, CA, USA, 2001, pp. F81–F85.
  12. “Lighting the way: Perspectives on the global lighting market,” McKinsey & Company Inc., New York City, NY, USA, 2011.
  13. H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.
  14. J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.
  15. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.
  16. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.
  17. D. Manolakis, “Efficient solution and performance analysis of 3-D position estimation by trilateration,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 4, pp. 1239–1248, Oct.1996.
  18. A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wirel. Commun., vol. 14, no. 6, pp. 6–12, 2007.

2014 (1)

S. Yang, E. Jeong, and S. Han, “Indoor positioning based on received optical power difference by angle of arrival,” Electron. Lett., vol. 50, no. 1, pp. 49–51, 2014.

2013 (5)

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.

S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

S. Yang, E. Jung, and S. Han, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1834–1837, 2013.

2012 (3)

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.

2010 (1)

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

2007 (1)

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wirel. Commun., vol. 14, no. 6, pp. 6–12, 2007.

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

Armstrong, J.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

Borriello, G.

J. Hightower and G. Borriello, “A survey and taxonomy of location system for ubiquitous computing,” IEEE Comput., vol. 34, no. 8, pp. 57–66, Aug.2001.

Boukerche, A.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wirel. Commun., vol. 14, no. 6, pp. 6–12, 2007.

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.

Ciaramella, E.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.

Cossu, G.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.

Dempster, A.

T. Gallagher, B. Li, A. Dempster, and C. Rizos, “A sector-based campus wide indoor positioning system,” in Proc. IEEE Int. Conf. Indoor Positioning Indoor Navigat., Zurich, Switzerland, 2010, pp. 1–8.

Gallagher, T.

T. Gallagher, B. Li, A. Dempster, and C. Rizos, “A sector-based campus wide indoor positioning system,” in Proc. IEEE Int. Conf. Indoor Positioning Indoor Navigat., Zurich, Switzerland, 2010, pp. 1–8.

Han, S.

S. Yang, E. Jeong, and S. Han, “Indoor positioning based on received optical power difference by angle of arrival,” Electron. Lett., vol. 50, no. 1, pp. 49–51, 2014.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

S. Yang, E. Jung, and S. Han, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1834–1837, 2013.

S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.

Haruyama, S.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., San Diego, CA, USA, 2001, pp. F81–F85.

Hightower, J.

J. Hightower and G. Borriello, “A survey and taxonomy of location system for ubiquitous computing,” IEEE Comput., vol. 34, no. 8, pp. 57–66, Aug.2001.

Jeong, E.

S. Yang, E. Jeong, and S. Han, “Indoor positioning based on received optical power difference by angle of arrival,” Electron. Lett., vol. 50, no. 1, pp. 49–51, 2014.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

Jung, E.

S. Yang, E. Jung, and S. Han, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1834–1837, 2013.

Keikhosrokiani, P.

P. Keikhosrokiani, N. Mustaffa, N. Zakaria, and M. I. Sarwar, “Wireless positioning techniques and location-based services: A literature review,” Multimedia and Ubiquitous Engineering. Dordrecht, The Netherlands:Springer, 2013, pp. 785–797.

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.

Kim, D.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.

Kim, H.

S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., San Diego, CA, USA, 2001, pp. F81–F85.

Kottke, C.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Langer, K.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Li, B.

T. Gallagher, B. Li, A. Dempster, and C. Rizos, “A sector-based campus wide indoor positioning system,” in Proc. IEEE Int. Conf. Indoor Positioning Indoor Navigat., Zurich, Switzerland, 2010, pp. 1–8.

Loureiro, A. A. F.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wirel. Commun., vol. 14, no. 6, pp. 6–12, 2007.

Manolakis, D.

D. Manolakis, “Efficient solution and performance analysis of 3-D position estimation by trilateration,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 4, pp. 1239–1248, Oct.1996.

Mustaffa, N.

P. Keikhosrokiani, N. Mustaffa, N. Zakaria, and M. I. Sarwar, “Wireless positioning techniques and location-based services: A literature review,” Multimedia and Ubiquitous Engineering. Dordrecht, The Netherlands:Springer, 2013, pp. 785–797.

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., San Diego, CA, USA, 2001, pp. F81–F85.

Nakamura, E. F.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wirel. Commun., vol. 14, no. 6, pp. 6–12, 2007.

Nerreter, S.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Oliveira, H. A. B.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wirel. Commun., vol. 14, no. 6, pp. 6–12, 2007.

Panta, K.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

Rizos, C.

T. Gallagher, B. Li, A. Dempster, and C. Rizos, “A sector-based campus wide indoor positioning system,” in Proc. IEEE Int. Conf. Indoor Positioning Indoor Navigat., Zurich, Switzerland, 2010, pp. 1–8.

Sarwar, M. I.

P. Keikhosrokiani, N. Mustaffa, N. Zakaria, and M. I. Sarwar, “Wireless positioning techniques and location-based services: A literature review,” Multimedia and Ubiquitous Engineering. Dordrecht, The Netherlands:Springer, 2013, pp. 785–797.

Son, Y.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.

Tanaka, Y.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., San Diego, CA, USA, 2001, pp. F81–F85.

Vucic, J.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Walewski, J. W.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Yang, S.

S. Yang, E. Jeong, and S. Han, “Indoor positioning based on received optical power difference by angle of arrival,” Electron. Lett., vol. 50, no. 1, pp. 49–51, 2014.

S. Yang, E. Jung, and S. Han, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1834–1837, 2013.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.

Zakaria, N.

P. Keikhosrokiani, N. Mustaffa, N. Zakaria, and M. I. Sarwar, “Wireless positioning techniques and location-based services: A literature review,” Multimedia and Ubiquitous Engineering. Dordrecht, The Netherlands:Springer, 2013, pp. 785–797.

Electron. Lett. (3)

S. Yang, E. Jeong, and S. Han, “Indoor positioning based on received optical power difference by angle of arrival,” Electron. Lett., vol. 50, no. 1, pp. 49–51, 2014.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett., vol. 48, no. 4, pp. 228–230, 2012.

S. Yang, E. Jeong, D. Kim, H. Kim, Y. Son, and S. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett., vol. 49, no. 1, pp. 54–56, 2013.

IEEE Commun. Lett. (1)

S. Yang, E. Jung, and S. Han, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett., vol. 17, no. 9, pp. 1834–1837, 2013.

IEEE Comput. (1)

J. Hightower and G. Borriello, “A survey and taxonomy of location system for ubiquitous computing,” IEEE Comput., vol. 34, no. 8, pp. 57–66, Aug.2001.

IEEE Photon. J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, 2012.

IEEE Trans. Aerosp. Electron. Syst. (1)

D. Manolakis, “Efficient solution and performance analysis of 3-D position estimation by trilateration,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 4, pp. 1239–1248, Oct.1996.

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, 2004.

IEEE Wirel. Commun. (1)

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wirel. Commun., vol. 14, no. 6, pp. 6–12, 2007.

IET Optoelectron. (1)

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “Single side-band orthogonal frequency division multiplexing signal transmission in RF carrier allocated visible light communication,” IET Optoelectron., vol. 7, no. 6, pp. 125–130, 2013.

J. Lightw. Technol. (2)

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

H. Kim, D. Kim, S. Yang, Y. Son, and S. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightw. Technol., vol. 31, no. 1, pp. 134–144, 2013.

Microw. Opt. Technol. Lett. (1)

S. Yang, D. Kim, H. Kim, Y. Son, and S. Han, “Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals,” Microw. Opt. Technol. Lett., vol. 55, no. 6, pp. 1385–1389, 2013.

Opt. Exp. (1)

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Exp., vol. 20, no. 26, pp. B501–B506, 2012.

Other (4)

T. Gallagher, B. Li, A. Dempster, and C. Rizos, “A sector-based campus wide indoor positioning system,” in Proc. IEEE Int. Conf. Indoor Positioning Indoor Navigat., Zurich, Switzerland, 2010, pp. 1–8.

P. Keikhosrokiani, N. Mustaffa, N. Zakaria, and M. I. Sarwar, “Wireless positioning techniques and location-based services: A literature review,” Multimedia and Ubiquitous Engineering. Dordrecht, The Netherlands:Springer, 2013, pp. 785–797.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” in Proc. IEEE 12th Int. Symp. Pers., Indoor Mobile Radio Commun., San Diego, CA, USA, 2001, pp. F81–F85.

“Lighting the way: Perspectives on the global lighting market,” McKinsey & Company Inc., New York City, NY, USA, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.