Abstract

We design staircase codes with overheads between 6.25% and 33.3% for high-speed optical transport networks. Using a reduced-complexity simulation of staircase coded transmission over the BSC, we select code candidates from within a limited parameter space. Software simulations of coded BSC transmission are performed with algebraic component code decoders. The net coding gain of the best code designs are competitive with the best known hard-decision decodable codes over the entire range of overheads. At 20% overhead, staircase codes are within 0.92 dB of BSC capacity at a bit error-rate of $10^{-15}$ . Decoding complexity and latency of the new staircase codes are also significantly reduced from existing hard-decision decodable schemes.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription