Abstract

A new structure for storing a radio frequency (RF) signal utilising a fibre-optic delay line is presented. It is based on a frequency shifting recirculating delay line loop for the RF pulse storage, which prevents lasing and enables multiple recirculations and long storage time to be realised. The new photonic RF memory (PRFM) can realise a long reconfigurable storage time, wide instantaneous bandwidth and high dynamic range. Experimental demonstration of the frequency shifting loop based PRFM has been carried out for the first time, showing a long and reconfigurable storage time of more than 300 μs with high signal fidelity.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. C. Schleher, Electronic warfare in the information age (Artech House, 1999).
  2. B. Manz, "DRFM grow to meet new threats," J. Electron. Defense 33, 43 (2010).
  3. J. Baldwinson, I. Antipov, "A modelling and simulation tool for the prediction of electronic attack effectiveness ," Association of Old Crows Int. Symp. presented at the AdelaideAustralia (2008).
  4. M. Greco, F. Gini, A. Farina, V. Ravenni, "Effect of phase and range gate pull-off delay quantisation on jammer signal ," IEE. Proc. Radar Sonar Navig. 153, 454-459 (2006).
  5. R. Gauvin, K. McRitchie, and S. E. McDonald, “Enabling technology: Radar PRI and RF prediction,” MC Countermeasures Inc., Kanata, ON, Canada, 2005..
  6. R. A. Minasian, "Photonic signal processing of microwave signals ," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006 ).
  7. I. Koffman, P. R. Herczfeld, A. S. Daryoush, B. Even-Or, R. Markowitz, "A fiber optic recirculating memory loop for radar applications," Microw. Opt. Technol. Lett. 1, 232-235 (1988).
  8. L. V. T. Nguyen, "Photonic radio frequency memory—Design issues and possible solutions," Defence Sci. Technol. Organisation (2003) Edinburgh, SA, Rep. DSTO-TR-1491.
  9. C. Pulikkaseril, S. M. Hanham, R. Shaw, R. A. Minasian, "Coherence controlled mm-wave generation using a frequency-shifting recirculating delay line," J. Lightw. Technol. 28, 1071-1078 ( 2010).
  10. B. Desthieux, M. Suyama, T. Chikama, "Theoretical and experimental study of self-filtering effect in concatenated erbium-doped fiber amplifiers," J. Lightw. Technol. 12, 1405-1411 (1994).
  11. E. H. W. Chan, R. A. Minasian, "Single sideband suppressed carrier modulator based frequency shifting recirculating delay line microwave photonic filter," Opt. Laser Technol. 45, 160-167 (2013).
  12. M. Tur, B. Moslehi, "Laser phase noise effects in fiber-optic signal processors with recirculating loops," Opt. Lett. 8, 229-231 (1983).
  13. C. Pulikkaseril, E. H. W. Chan, R. A. Minasian, "Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line," J. Lightw. Technol 28, 262- 269 (2010).
  14. C. R. Giles, "Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers," J. Lightw. Technol. 9, 147-154 (1991).
  15. T. Kawanishi, T. Sakamoto, M. Izutsu, "High-speed control of lightwave amplitude, phase and frequency by use of electrooptic effect," IEEE J. Select. Topics Quantum Electron. 13, 79- 91 (2007).
  16. G. H. Smith, D. Novak, Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).
  17. K. Oh, U. Paek, Silica optical fiber technology for devices and components: Design, fabrication, and international standards (Wiley, 2012).
  18. I. L. Newberg, C. M. Gee, G. D. Thurmond, H. W. Yen, "Long microwave delay fiber-optic link for radar testing ," IEEE Trans. Microw. Theory Tech. 38, 664-666 (1990 ).
  19. T. Mizuochi, K. Shimizu, K. Shimomura, E. Ishimura, T. Kitayama, K. Ito, "Frequency stabilized 622-Mb/s 16-channel optical FDM system and its performance in 1.3/1.55-μm zero-dispersion fiber transmission," J. Lightw. Technol 13, 1937 -1947 (1995).
  20. Spectrum and signal analysis…pulsed RF, Agilent Technologies Application Note 150–2, 2012..

2013 (1)

E. H. W. Chan, R. A. Minasian, "Single sideband suppressed carrier modulator based frequency shifting recirculating delay line microwave photonic filter," Opt. Laser Technol. 45, 160-167 (2013).

2010 (2)

C. Pulikkaseril, E. H. W. Chan, R. A. Minasian, "Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line," J. Lightw. Technol 28, 262- 269 (2010).

B. Manz, "DRFM grow to meet new threats," J. Electron. Defense 33, 43 (2010).

2007 (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, "High-speed control of lightwave amplitude, phase and frequency by use of electrooptic effect," IEEE J. Select. Topics Quantum Electron. 13, 79- 91 (2007).

2006 (1)

M. Greco, F. Gini, A. Farina, V. Ravenni, "Effect of phase and range gate pull-off delay quantisation on jammer signal ," IEE. Proc. Radar Sonar Navig. 153, 454-459 (2006).

2006 (1)

R. A. Minasian, "Photonic signal processing of microwave signals ," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006 ).

2003 (1)

L. V. T. Nguyen, "Photonic radio frequency memory—Design issues and possible solutions," Defence Sci. Technol. Organisation (2003) Edinburgh, SA, Rep. DSTO-TR-1491.

1997 (1)

G. H. Smith, D. Novak, Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).

1995 (1)

T. Mizuochi, K. Shimizu, K. Shimomura, E. Ishimura, T. Kitayama, K. Ito, "Frequency stabilized 622-Mb/s 16-channel optical FDM system and its performance in 1.3/1.55-μm zero-dispersion fiber transmission," J. Lightw. Technol 13, 1937 -1947 (1995).

1994 (1)

B. Desthieux, M. Suyama, T. Chikama, "Theoretical and experimental study of self-filtering effect in concatenated erbium-doped fiber amplifiers," J. Lightw. Technol. 12, 1405-1411 (1994).

1991 (1)

C. R. Giles, "Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers," J. Lightw. Technol. 9, 147-154 (1991).

1990 ()

I. L. Newberg, C. M. Gee, G. D. Thurmond, H. W. Yen, "Long microwave delay fiber-optic link for radar testing ," IEEE Trans. Microw. Theory Tech. 38, 664-666 (1990 ).

1988 (1)

I. Koffman, P. R. Herczfeld, A. S. Daryoush, B. Even-Or, R. Markowitz, "A fiber optic recirculating memory loop for radar applications," Microw. Opt. Technol. Lett. 1, 232-235 (1988).

1983 (1)

J. Lightw. Technol (1)

C. Pulikkaseril, E. H. W. Chan, R. A. Minasian, "Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line," J. Lightw. Technol 28, 262- 269 (2010).

Microw. Opt. Technol. Lett. (1)

I. Koffman, P. R. Herczfeld, A. S. Daryoush, B. Even-Or, R. Markowitz, "A fiber optic recirculating memory loop for radar applications," Microw. Opt. Technol. Lett. 1, 232-235 (1988).

Defence Sci. Technol. Organisation (1)

L. V. T. Nguyen, "Photonic radio frequency memory—Design issues and possible solutions," Defence Sci. Technol. Organisation (2003) Edinburgh, SA, Rep. DSTO-TR-1491.

IEE. Proc. Radar Sonar Navig. (1)

M. Greco, F. Gini, A. Farina, V. Ravenni, "Effect of phase and range gate pull-off delay quantisation on jammer signal ," IEE. Proc. Radar Sonar Navig. 153, 454-459 (2006).

IEEE J. Select. Topics Quantum Electron. (1)

T. Kawanishi, T. Sakamoto, M. Izutsu, "High-speed control of lightwave amplitude, phase and frequency by use of electrooptic effect," IEEE J. Select. Topics Quantum Electron. 13, 79- 91 (2007).

IEEE Trans. Microw. Theory Tech. (3)

G. H. Smith, D. Novak, Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997).

I. L. Newberg, C. M. Gee, G. D. Thurmond, H. W. Yen, "Long microwave delay fiber-optic link for radar testing ," IEEE Trans. Microw. Theory Tech. 38, 664-666 (1990 ).

R. A. Minasian, "Photonic signal processing of microwave signals ," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006 ).

J. Electron. Defense (1)

B. Manz, "DRFM grow to meet new threats," J. Electron. Defense 33, 43 (2010).

J. Lightw. Technol (1)

T. Mizuochi, K. Shimizu, K. Shimomura, E. Ishimura, T. Kitayama, K. Ito, "Frequency stabilized 622-Mb/s 16-channel optical FDM system and its performance in 1.3/1.55-μm zero-dispersion fiber transmission," J. Lightw. Technol 13, 1937 -1947 (1995).

J. Lightw. Technol. (3)

C. R. Giles, "Propagation of signal and noise in concatenated Erbium-doped fiber optical amplifiers," J. Lightw. Technol. 9, 147-154 (1991).

C. Pulikkaseril, S. M. Hanham, R. Shaw, R. A. Minasian, "Coherence controlled mm-wave generation using a frequency-shifting recirculating delay line," J. Lightw. Technol. 28, 1071-1078 ( 2010).

B. Desthieux, M. Suyama, T. Chikama, "Theoretical and experimental study of self-filtering effect in concatenated erbium-doped fiber amplifiers," J. Lightw. Technol. 12, 1405-1411 (1994).

Opt. Laser Technol. (1)

E. H. W. Chan, R. A. Minasian, "Single sideband suppressed carrier modulator based frequency shifting recirculating delay line microwave photonic filter," Opt. Laser Technol. 45, 160-167 (2013).

Opt. Lett. (1)

Other (5)

J. Baldwinson, I. Antipov, "A modelling and simulation tool for the prediction of electronic attack effectiveness ," Association of Old Crows Int. Symp. presented at the AdelaideAustralia (2008).

R. Gauvin, K. McRitchie, and S. E. McDonald, “Enabling technology: Radar PRI and RF prediction,” MC Countermeasures Inc., Kanata, ON, Canada, 2005..

D. C. Schleher, Electronic warfare in the information age (Artech House, 1999).

Spectrum and signal analysis…pulsed RF, Agilent Technologies Application Note 150–2, 2012..

K. Oh, U. Paek, Silica optical fiber technology for devices and components: Design, fabrication, and international standards (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.