Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 1,
  • pp. 70-80
  • (2014)

On the Benefits of Pre-Equalization for ACO-OFDM and Flip-OFDM Indoor Wireless Optical Transmissions Over Dispersive Channels

Not Accessible

Your library or personal account may give you access

Abstract

This paper analyzes the performances of indoor optical wireless data transmissions based on unipolar orthogonal frequency division multiplexing (OFDM). In particular, it is shown that using frequency-domain pre-equalization can provide benefits in terms of the reduction in the required optical transmit power for a given desired bit error rate (BER) from uncoded transmissions. Known for its power efficiency, asymmetrically clipped optical OFDM (ACO-OFDM) is considered as a unipolar modulation scheme for intensity modulation with direct detection (IM/DD). In addition, flip-OFDM is also considered as an alternative unipolar modulation scheme which is known to be as power efficient as ACO-OFDM. For both ACO-OFDM and flip-OFDM, analytical and simulation results show that using pre-equalization can save up to ${\bf 2}$ dB of transmit optical power for a typical indoor optical wireless transmission scenario with the bit rate of ${\bf 10}$ Mbps and the BER target of ${\bf 10^{-5}}$ .

© 2013 IEEE

PDF Article
More Like This
Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission

Qi Wang, Chen Qian, Xuhan Guo, Zhaocheng Wang, David G. Cunningham, and Ian H. White
Opt. Express 23(9) 12382-12393 (2015)

Hybrid Asymmetrically Clipped OFDM-Based IM/DD Optical Wireless System

Bilal Ranjha and Mohsen Kavehrad
J. Opt. Commun. Netw. 6(4) 387-396 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.