Abstract

A micro embedded ring resonator modulator using quantum confined stark effect (QCSE) has been modeled and studied in this paper. Semi analytical design methods for various components like bend, coupler, and the whole embedded ring have been used here. Time domain and frequency domain analysis methods have been developed and studied. Using these methods a 50 Gbps, 11 dB extinction ratio, 5 μm outer radius embedded ring, QCSE tuned optical modulator design has been proposed.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, "GaAs microcavity channel-dropping filter based on a race-rrack resonator," IEEE Photon. Technol. Lett. 11, 1620-1622 (1999).
  2. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
  3. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, P. T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 6524-6540 (2002).
  4. M. F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Amer. B 25, C87 -C97 (2008).
  5. B. E. Little, "Microring resonator channel dropping filters," J. Lightw. Tech. 15, 998 -1005 (1997).
  6. M. S. Nawrocka, T. Liu, X. Wang, R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range ," Appl. Phys. Lett. 89, 1-3 (2006).
  7. L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, "Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators," Opt. Exp. 19, 6524-6540 (2011).
  8. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, " 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Exp. 15, 430-436 (2007).
  9. I.-L. Gheorma, R. M. Osgood, Jr."Fundamental limitations of optical resonator based high-speed EO modulators ," IEEE Photon. Technol. Lett. 14, 795-797 (2002).
  10. R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, P.-T. Ho, "A tunable GaInAsP–InP optical microring notch filter," IEEE Photon. Technol. Lett. 16, 467-469 (2004).
  11. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002 ).
  12. W. D. Sacher, J. K. S. Poon, "Dynamics of microring resonator modulators," Opt. Exp. 16, 15741-15753 (2008).
  13. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, "Embedded ring resonators for microphotonic applications," Opt. Lett. 33, 1978-1980 (2008 ).
  14. P. Bhattacharya, Semiconductor Optoelectronic Devices (PHI, 2009).
  15. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  16. K. Okamoto, Fundamentals of Optical Waveguides (Academic , 2006).
  17. P. Lusse, P. Stuwe, J. Schule, H.-G. Unger, "Analysis of vectorial mode fields in optical waveguides by a new finite difference method," J. Lightw. Technol. 12, 487-494 (1994 ).
  18. H. Kogelnik, Theory of dielectric waveguides”, Guided-Wave Optoelectronics (Springer-Verlag, 1988) pp. 7- 88.
  19. E. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2103- 2132 (1969).
  20. K. R. Hiremath, "Analytic approach to dielectric optical bent slab waveguides," J. Opt. Soc. Amer. A 26, 2321-2326 (2004).
  21. D. Marcuse, "Bending losses of the asymmetric slab waveguide," Bell Syst. Tech. J. 50, 2103 -2132 (1971).
  22. K. Hiremath, “Modeling of 2D cylindrical integrated optical microresonators,” M.Sc. Thesis, Univ. of Twente, Enschede, The Netherlands, 2003..
  23. A. Arbabi, Y. M. Kang, L. L. Goddard, "Cylindrical coordinates coupled mode theory," IEEE J. Quantum Electron. 46, 1769-1774 (2010 ).
  24. K. Oda, N. Takato, H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightw. Technol. 9, 728-736 (1991).
  25. A. J Moseley, D. J. Robbins, A. C. Marshall, M. Q. Kearley, J. I. Davies, "Quantum confined Stark effect in InGaAs/InP single quantum wells investigated by photocurrent spectroscopy," Semicond. Sci. Technol. 4, (1989).
  26. T. Bhowmick, U. Das, " Integrated MQW intermixed InGaAsP/InP waveguide photodiodes," Opt. Quant. Electron. 42, 109-120 (2010 ).
  27. R. E. Nahory, M. A. Pollack, W. D. Johnston, R. L. Barns, "Band gap versus composition and demonstration of Vegard's law for In $_1{-}x$ Ga $_{x}$ As $_{y}$ P $_1{-}y$ lattice matched to InP," Appl. Phys. Lett. 33, 659-661 (1978).
  28. Broberg, S. Lindgren, "Refractive-index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region ," J. Appl. Phys. 55, 3376-3381 (1984).
  29. B. R. Bennett, R. A. Soref, J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26 , 113-122 (1990).
  30. M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions (Applied Mathematics Series 55),” National Bureau of Standards, Washington, DC, USA, 1964..
  31. V. Barve, U. Das, " Design of a grating-assisted lateral directional coupler by impurity-induced quantum-well intermixing of InGaAs/GaAs ," J. Lightw. Tech. 25, 2448-2455 (2007).
  32. R. K. Sonkar, U. Das, " Quantum well intermixed waveguide grating," Opt. Quantum Electron. 42, 631-643 (2011).
  33. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Series in materials for Electronics and Optoelectronic Applications) (Wiley, 2005).
  34. I. Bar Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, B. I. Miller, "Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy," Appl. Phy. Lett. 50, 1010-1012 (1987).
  35. M. Hammer, K. R. Hiremath, R. Stoffer, "Analytical approaches to the description of optical microresonator devices," Proc. Microresonators Building Blocks VLSI Photon. (2003) pp. 48-71.
  36. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides ," IEEE J. Sel. Topics Quantum Electron. 12, 1306-1321 ( 2006).
  37. D. Rafizadeh, J. P. Zhang, R. C. Tiberio, S. T. Ho, "Propagation loss measurements in semiconductor microcavity ring and disk resonators ," J. Lightw. Tech. 16, 1308-1314 (1998).

2011 (2)

L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, "Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators," Opt. Exp. 19, 6524-6540 (2011).

R. K. Sonkar, U. Das, " Quantum well intermixed waveguide grating," Opt. Quantum Electron. 42, 631-643 (2011).

2008 (2)

M. F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Amer. B 25, C87 -C97 (2008).

W. D. Sacher, J. K. S. Poon, "Dynamics of microring resonator modulators," Opt. Exp. 16, 15741-15753 (2008).

2007 (2)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, " 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Exp. 15, 430-436 (2007).

V. Barve, U. Das, " Design of a grating-assisted lateral directional coupler by impurity-induced quantum-well intermixing of InGaAs/GaAs ," J. Lightw. Tech. 25, 2448-2455 (2007).

2006 (1)

M. S. Nawrocka, T. Liu, X. Wang, R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range ," Appl. Phys. Lett. 89, 1-3 (2006).

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).

2004 (2)

K. R. Hiremath, "Analytic approach to dielectric optical bent slab waveguides," J. Opt. Soc. Amer. A 26, 2321-2326 (2004).

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, P.-T. Ho, "A tunable GaInAsP–InP optical microring notch filter," IEEE Photon. Technol. Lett. 16, 467-469 (2004).

2002 (2)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, P. T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 6524-6540 (2002).

I.-L. Gheorma, R. M. Osgood, Jr."Fundamental limitations of optical resonator based high-speed EO modulators ," IEEE Photon. Technol. Lett. 14, 795-797 (2002).

1999 (1)

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, "GaAs microcavity channel-dropping filter based on a race-rrack resonator," IEEE Photon. Technol. Lett. 11, 1620-1622 (1999).

1998 (1)

D. Rafizadeh, J. P. Zhang, R. C. Tiberio, S. T. Ho, "Propagation loss measurements in semiconductor microcavity ring and disk resonators ," J. Lightw. Tech. 16, 1308-1314 (1998).

1997 (1)

B. E. Little, "Microring resonator channel dropping filters," J. Lightw. Tech. 15, 998 -1005 (1997).

1991 (1)

K. Oda, N. Takato, H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightw. Technol. 9, 728-736 (1991).

1990 (1)

B. R. Bennett, R. A. Soref, J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26 , 113-122 (1990).

1989 (1)

A. J Moseley, D. J. Robbins, A. C. Marshall, M. Q. Kearley, J. I. Davies, "Quantum confined Stark effect in InGaAs/InP single quantum wells investigated by photocurrent spectroscopy," Semicond. Sci. Technol. 4, (1989).

1987 (1)

I. Bar Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, B. I. Miller, "Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy," Appl. Phy. Lett. 50, 1010-1012 (1987).

1984 (1)

Broberg, S. Lindgren, "Refractive-index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region ," J. Appl. Phys. 55, 3376-3381 (1984).

1978 (1)

R. E. Nahory, M. A. Pollack, W. D. Johnston, R. L. Barns, "Band gap versus composition and demonstration of Vegard's law for In $_1{-}x$ Ga $_{x}$ As $_{y}$ P $_1{-}y$ lattice matched to InP," Appl. Phys. Lett. 33, 659-661 (1978).

1971 (1)

D. Marcuse, "Bending losses of the asymmetric slab waveguide," Bell Syst. Tech. J. 50, 2103 -2132 (1971).

1969 (1)

E. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2103- 2132 (1969).

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).

Appl. Phy. Lett. (1)

I. Bar Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, B. I. Miller, "Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy," Appl. Phy. Lett. 50, 1010-1012 (1987).

Appl. Phys. Lett. (2)

R. E. Nahory, M. A. Pollack, W. D. Johnston, R. L. Barns, "Band gap versus composition and demonstration of Vegard's law for In $_1{-}x$ Ga $_{x}$ As $_{y}$ P $_1{-}y$ lattice matched to InP," Appl. Phys. Lett. 33, 659-661 (1978).

M. S. Nawrocka, T. Liu, X. Wang, R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range ," Appl. Phys. Lett. 89, 1-3 (2006).

Bell Syst. Tech. J. (1)

E. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2103- 2132 (1969).

Bell Syst. Tech. J. (1)

D. Marcuse, "Bending losses of the asymmetric slab waveguide," Bell Syst. Tech. J. 50, 2103 -2132 (1971).

IEEE J. Quantum Electron. (2)

A. Arbabi, Y. M. Kang, L. L. Goddard, "Cylindrical coordinates coupled mode theory," IEEE J. Quantum Electron. 46, 1769-1774 (2010 ).

B. R. Bennett, R. A. Soref, J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26 , 113-122 (1990).

IEEE J. Sel. Topics Quantum Electron. (2)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, P. T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 6524-6540 (2002).

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides ," IEEE J. Sel. Topics Quantum Electron. 12, 1306-1321 ( 2006).

IEEE Photon. Technol. Lett. (4)

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, "GaAs microcavity channel-dropping filter based on a race-rrack resonator," IEEE Photon. Technol. Lett. 11, 1620-1622 (1999).

I.-L. Gheorma, R. M. Osgood, Jr."Fundamental limitations of optical resonator based high-speed EO modulators ," IEEE Photon. Technol. Lett. 14, 795-797 (2002).

R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, P.-T. Ho, "A tunable GaInAsP–InP optical microring notch filter," IEEE Photon. Technol. Lett. 16, 467-469 (2004).

Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002 ).

J. Appl. Phys. (1)

Broberg, S. Lindgren, "Refractive-index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region ," J. Appl. Phys. 55, 3376-3381 (1984).

J. Lightw. Tech. (3)

V. Barve, U. Das, " Design of a grating-assisted lateral directional coupler by impurity-induced quantum-well intermixing of InGaAs/GaAs ," J. Lightw. Tech. 25, 2448-2455 (2007).

B. E. Little, "Microring resonator channel dropping filters," J. Lightw. Tech. 15, 998 -1005 (1997).

D. Rafizadeh, J. P. Zhang, R. C. Tiberio, S. T. Ho, "Propagation loss measurements in semiconductor microcavity ring and disk resonators ," J. Lightw. Tech. 16, 1308-1314 (1998).

J. Lightw. Technol. (2)

P. Lusse, P. Stuwe, J. Schule, H.-G. Unger, "Analysis of vectorial mode fields in optical waveguides by a new finite difference method," J. Lightw. Technol. 12, 487-494 (1994 ).

K. Oda, N. Takato, H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightw. Technol. 9, 728-736 (1991).

J. Opt. Soc. Amer. A (1)

K. R. Hiremath, "Analytic approach to dielectric optical bent slab waveguides," J. Opt. Soc. Amer. A 26, 2321-2326 (2004).

J. Opt. Soc. Amer. B (1)

M. F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Amer. B 25, C87 -C97 (2008).

Opt. Exp. (1)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, " 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Exp. 15, 430-436 (2007).

Opt. Exp. (1)

L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, "Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators," Opt. Exp. 19, 6524-6540 (2011).

Opt. Exp. (1)

W. D. Sacher, J. K. S. Poon, "Dynamics of microring resonator modulators," Opt. Exp. 16, 15741-15753 (2008).

Opt. Lett. (1)

Opt. Quant. Electron. (1)

T. Bhowmick, U. Das, " Integrated MQW intermixed InGaAsP/InP waveguide photodiodes," Opt. Quant. Electron. 42, 109-120 (2010 ).

Opt. Quantum Electron. (1)

R. K. Sonkar, U. Das, " Quantum well intermixed waveguide grating," Opt. Quantum Electron. 42, 631-643 (2011).

Semicond. Sci. Technol. (1)

A. J Moseley, D. J. Robbins, A. C. Marshall, M. Q. Kearley, J. I. Davies, "Quantum confined Stark effect in InGaAs/InP single quantum wells investigated by photocurrent spectroscopy," Semicond. Sci. Technol. 4, (1989).

Other (8)

K. Hiremath, “Modeling of 2D cylindrical integrated optical microresonators,” M.Sc. Thesis, Univ. of Twente, Enschede, The Netherlands, 2003..

S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Series in materials for Electronics and Optoelectronic Applications) (Wiley, 2005).

M. Hammer, K. R. Hiremath, R. Stoffer, "Analytical approaches to the description of optical microresonator devices," Proc. Microresonators Building Blocks VLSI Photon. (2003) pp. 48-71.

M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions (Applied Mathematics Series 55),” National Bureau of Standards, Washington, DC, USA, 1964..

P. Bhattacharya, Semiconductor Optoelectronic Devices (PHI, 2009).

Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

K. Okamoto, Fundamentals of Optical Waveguides (Academic , 2006).

H. Kogelnik, Theory of dielectric waveguides”, Guided-Wave Optoelectronics (Springer-Verlag, 1988) pp. 7- 88.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.