Abstract

We observe that the performance of wavelength- routed (WR) networks often suffers from asymmetric traffic and network traffic patterns differing from the original design plans. WR networks with a fixed number of channels in a given transmission direction are inflexible. Therefore, we propose reversible wavelength channels. Like a reversible lane in highway systems, a reversible wavelength channel has the flexibility of its transmission direction being configurable at the setup of a lightpath. So far reversible wavelength channels have not been discussed in WR networks even though we observe that most of the required technologies are already available. In this paper, we discuss all the required technologies for implementing reversible wavelength channels in WR networks. We demonstrate that reversible wavelength channel can provide significant performance improvement for WR networks when the traffic is asymmetric. Even if the traffic is symmetric, we also have nontrivial performance improvement with reversible wavelength channels, i.e., the blocking performance of WR networks with reversible wavelength channels will be similar to that of normal WR networks with doubling the number of fibers per link. Different implementation approaches for reversible wavelength channels are discussed. Among them, the performance of the reversible waveband approach is discussed in detail.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. Gladisch, "System and core network architecture," Proc. IEEE 94, 869-981 (2006).
  2. J. Berthold, A. A. M. Saleh, L. Blair, J. M. Simmons, "Optical networking: Past, present, and future," J. Lightw. Technol. 26, 1104-1118 (2008).
  3. I. Chlamtac, A. Ganz, G. Karmi, "Lightpath communications: An approach to high bandwidth optical WAN's," IEEE Trans. Commun. 40, 1171-1182 (1992).
  4. K. C. Lee, V. O. K. Li, "A wavelength-convertible optical network," J. Lightw. Technol. 11, 962-970 (1993).
  5. Spectral Grids for WDM Applications: DWDM Frequency Grid ITU-T G.694.1 (2002).
  6. C. S. Xin, C. M. Qiao, S. Dixit, "Traffic grooming in mesh WDM optical networks – Performance analysis," IEEE J. Sel. Areas Commun. 22, 1658-1669 (2004).
  7. S. Poole, S. Frisken, M. A. Roelens, C. Cameron, "Bandwidth-flexible ROADMs as network elements," Proc. OFC 2011 (2011).
  8. K. Thompson, G. J. Miller, R. Wilder, "Wide-area Internet traffic patterns and characteristics," IEEE Network 10-27 (1997).
  9. V. Paxson, "End-to-end Internet packet dynamics," IEEE/ACM Trans. Netw. 7, 277-292 (1999).
  10. G. Maier, A. Feldmann, V. Paxson, M. Allman, "On dominant characteristics of residential broadband Internet traffic," Proc. 9th ACM SIGCOMM Conf. Internet Measurement Conf. (IMC 2009) (2009) pp. 90-102.
  11. B. Wolshon, L. Lambert, “NCHRP Synthesis 340 – Convertible Roadways and Lanes: A Synthesis of Highway Practice,” Transportation Research Board, National Research Council (2004).
  12. E. K. MacHale, G. Talli, P. D. Townsend, "10 Gb/s bidirectional transmission in a 116 km reach hybrid DWDM-TDM PON," Proc. OFC 2006 (2006).
  13. C. H. Kim, C. H. Lee, Y. C. Chung, "Bidirectional WDM self-healing ring network based on simple bidirectional add/drop amplifier modules," IEEE Photon. Technol. Lett. 10, 1340-1342 (1998).
  14. S. B. Park, C. H. Lee, S. G. Kang, S. B. Lee, "Bidirectional WDM self-healing ring network for hub/remote nodes," IEEE Photon. Technol. Lett. 15, 1657-1659 (2003).
  15. X. Sun, "A single-fiber biDirectional WDM self-healing ring network with bidirectional OADM for metro-access applications," J. Sel. Areas Commun. 25, 18-24 (2007).
  16. M. S. Lee, I. K. Hwang, B. Y. Kim, "Bidirectional wavelength-selective optical isolator," Electron. Lett. 37, 910-912 (2001).
  17. X. K. Hu, "A wavelength selective bidirectional isolator for access optical networks," Opt. Fiber Technol. 17, 191-195 (2011).
  18. K. P. Ho, S. K. Liaw, C. Lin, "Performance of an eight-wavelength bidirectional WDM add/drop multiplexer with 80-Gbit/s capacity," Proc. OFC (1997) pp. 90-91.
  19. Y. Shen, X. Wu, C. Lu, T. H. Cheng, M. K. Rao, "A novel single-fiber bidirectional optical add/drop multiplexer for distribution networks," Proc. OFC (2001).
  20. A. V. Tran, C. J. Chae, R. S. Tucker, "A bidirectional optical add-drop multiplexer with gain using multiport circulators, fiber Bragg gratings, and a single unidirectional optical amplifier," IEEE Photon. Technol. Lett. 17, 975-977 (2003).
  21. S. K. Liaw, "Bidirectional reconfigurable optical add-drop multiplexer with power compensation built-in optical amplifiers," J. Opt. Networking 7, 662-672 (2008).
  22. J. M. P. Delavaux, "WDM repeaterless bidirectional transmission of 73 channels at 10 Gbit/s over 126 km of True Wave fiber," Proc. ECOC (1997) pp. 21-23.
  23. C. H. Chang, Y. K. Chen, "Demonstration of repeaterless bidirectional transmission of multiple AM-VSB CATV signals over conventional single-mode fiber," IEEE Photon. Technol. Lett. 12, 734-736 (2000).
  24. H. H. Lu, H. L. Ma, C. T. Lee, "A bidirectional hybrid DWDM system for CATV and OC-48 trunking," IEEE Photon. Technol. Lett. 13, 902-904 (2001).
  25. M. Karasek, J. Vojtech, J. Radil, "Bidirectional repeaterless transmission of 8×10 GE over 210 km of standard single mode fibre," IET Optoelectron. 1, 96-100 (2007).
  26. M. Oskar van Deventer, O. J. Koning, "Bidirectional transmission using an erbium-doped fiber amplifier without optical isolators," IEEE Photon. Technol. Lett. 7, 1372-1274 (1995).
  27. S. K. Liaw, K. P. Ho, C. Lin, S. Chi, "Multichannel bidirectional transmission using a WDM MUX/DMUX pair and unidirectional in-line amplifiers," IEEE Photon. Technol. Lett. 9, 1664-1666 (1997).
  28. C. H. Kim, C. H. Lee, Y. C. Chung, "A novel bidirectional add/drop amplifier (BADA)," IEEE Photon. Technol. Lett. 10, 1118-1120 (1998).
  29. L. D. Garrett, "Bidirectional ULH transmission of 160-Gb/s full-duplex capacity over 5000 km in a fully bidirectional recirculating loop," IEEE Photon. Technol. Lett. 16, 1757-1759 (2004).
  30. M. H. Eiselt, "Field trial of a 1250-km private optical network based on a single-fiber, shared-amplifier WDM system," Proc. NFOEC (2006).
  31. J. Kim, B. Lee, "Independently switchable bidirectional optical cross connects," IEEE Photon. Technol. Lett. 12, 693-695 (2000).
  32. S. Kim, "Bidirectional optical cross connects for multiwavelength ring networks using single arrayed waveguide grating router," J. Lightw. Technol. 20, 188-194 (2002).
  33. H. Yuan, W. D. Zhong, W. Hu, "FBG-based bidirectional optical cross connects for bidirectional WDM ring networks," J. Lightw. Technol. 22, 2710-2721 (2004).
  34. S. K. Liaw, P. S. Tsai, K. Y. Hsu, A. Tverjanovich, "Power-compensated 3×3 reconfigurable bidirectional multiwavelength cross-connect device based on strain tunable fiber Bragg gratings," Proc. NoC (2011).
  35. P. Ghelfi, "Optical cross connects architecture with per-node add & drop functionality," Proc. NFOEC (2007).
  36. M. Oskar van Deventer, Fundamentals of Bidirectional Transmission Over a Single Optical Fibre (Kluwer, 1996).
  37. J. Kim, "1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss," IEEE Photon. Technol. Lett. 5, 537-1539 (2003).
  38. S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic Internet," J. Lightw. Technol. 24, 4468-4492 (2006).
  39. S. Sygletos, I. Tomkos, J. Leuthold, "Technological challenges on the road toward transparent networking," J. Opt. Netw. 7, 321-350 (2008).
  40. R. I. Laming, D. N. Payne, "Noise characteristic of Erbium-doped fiber amplifier pumped at 980 nm," IEEE Photon. Technol. Lett. 2, 418-421 (1990).
  41. R. G. Smart, J. L. Zyskind, J. W. Sulhoff, D. J. DiGiovanni, "An investigation of the noise figure and conversion efficiency of 0.98 μm pumped Erbium-doped fiber amplifiers under saturated conditions," IEEE Photon. Technol. Lett. 4, 1261-1264 (1992).
  42. H. Bulow, T. Pfeiffer, "Calculation of the noise figure of Erbium-doped fiber amplifiers using small signal attenuations and saturation powers," IEEE Photon. Technol. Lett. 4, 1351-1354 (1992).
  43. M. N. Islam, "Raman amplifiers for telecommunications," IEEE J. Sel. Topics Quantum Electron. 8, 548-559 (2002).
  44. F. P. Kelly, "Block probabilities in large circuit-switched networks," Adv. Appl. Probab. 18, 473-505 (1986).

2011

X. K. Hu, "A wavelength selective bidirectional isolator for access optical networks," Opt. Fiber Technol. 17, 191-195 (2011).

2008

S. K. Liaw, "Bidirectional reconfigurable optical add-drop multiplexer with power compensation built-in optical amplifiers," J. Opt. Networking 7, 662-672 (2008).

J. Berthold, A. A. M. Saleh, L. Blair, J. M. Simmons, "Optical networking: Past, present, and future," J. Lightw. Technol. 26, 1104-1118 (2008).

S. Sygletos, I. Tomkos, J. Leuthold, "Technological challenges on the road toward transparent networking," J. Opt. Netw. 7, 321-350 (2008).

2007

M. Karasek, J. Vojtech, J. Radil, "Bidirectional repeaterless transmission of 8×10 GE over 210 km of standard single mode fibre," IET Optoelectron. 1, 96-100 (2007).

X. Sun, "A single-fiber biDirectional WDM self-healing ring network with bidirectional OADM for metro-access applications," J. Sel. Areas Commun. 25, 18-24 (2007).

2006

A. Gladisch, "System and core network architecture," Proc. IEEE 94, 869-981 (2006).

S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic Internet," J. Lightw. Technol. 24, 4468-4492 (2006).

2004

L. D. Garrett, "Bidirectional ULH transmission of 160-Gb/s full-duplex capacity over 5000 km in a fully bidirectional recirculating loop," IEEE Photon. Technol. Lett. 16, 1757-1759 (2004).

H. Yuan, W. D. Zhong, W. Hu, "FBG-based bidirectional optical cross connects for bidirectional WDM ring networks," J. Lightw. Technol. 22, 2710-2721 (2004).

C. S. Xin, C. M. Qiao, S. Dixit, "Traffic grooming in mesh WDM optical networks – Performance analysis," IEEE J. Sel. Areas Commun. 22, 1658-1669 (2004).

2003

A. V. Tran, C. J. Chae, R. S. Tucker, "A bidirectional optical add-drop multiplexer with gain using multiport circulators, fiber Bragg gratings, and a single unidirectional optical amplifier," IEEE Photon. Technol. Lett. 17, 975-977 (2003).

S. B. Park, C. H. Lee, S. G. Kang, S. B. Lee, "Bidirectional WDM self-healing ring network for hub/remote nodes," IEEE Photon. Technol. Lett. 15, 1657-1659 (2003).

J. Kim, "1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss," IEEE Photon. Technol. Lett. 5, 537-1539 (2003).

2002

S. Kim, "Bidirectional optical cross connects for multiwavelength ring networks using single arrayed waveguide grating router," J. Lightw. Technol. 20, 188-194 (2002).

M. N. Islam, "Raman amplifiers for telecommunications," IEEE J. Sel. Topics Quantum Electron. 8, 548-559 (2002).

2001

H. H. Lu, H. L. Ma, C. T. Lee, "A bidirectional hybrid DWDM system for CATV and OC-48 trunking," IEEE Photon. Technol. Lett. 13, 902-904 (2001).

M. S. Lee, I. K. Hwang, B. Y. Kim, "Bidirectional wavelength-selective optical isolator," Electron. Lett. 37, 910-912 (2001).

2000

C. H. Chang, Y. K. Chen, "Demonstration of repeaterless bidirectional transmission of multiple AM-VSB CATV signals over conventional single-mode fiber," IEEE Photon. Technol. Lett. 12, 734-736 (2000).

J. Kim, B. Lee, "Independently switchable bidirectional optical cross connects," IEEE Photon. Technol. Lett. 12, 693-695 (2000).

1999

V. Paxson, "End-to-end Internet packet dynamics," IEEE/ACM Trans. Netw. 7, 277-292 (1999).

1998

C. H. Kim, C. H. Lee, Y. C. Chung, "Bidirectional WDM self-healing ring network based on simple bidirectional add/drop amplifier modules," IEEE Photon. Technol. Lett. 10, 1340-1342 (1998).

C. H. Kim, C. H. Lee, Y. C. Chung, "A novel bidirectional add/drop amplifier (BADA)," IEEE Photon. Technol. Lett. 10, 1118-1120 (1998).

1997

S. K. Liaw, K. P. Ho, C. Lin, S. Chi, "Multichannel bidirectional transmission using a WDM MUX/DMUX pair and unidirectional in-line amplifiers," IEEE Photon. Technol. Lett. 9, 1664-1666 (1997).

K. Thompson, G. J. Miller, R. Wilder, "Wide-area Internet traffic patterns and characteristics," IEEE Network 10-27 (1997).

1995

M. Oskar van Deventer, O. J. Koning, "Bidirectional transmission using an erbium-doped fiber amplifier without optical isolators," IEEE Photon. Technol. Lett. 7, 1372-1274 (1995).

1993

K. C. Lee, V. O. K. Li, "A wavelength-convertible optical network," J. Lightw. Technol. 11, 962-970 (1993).

1992

I. Chlamtac, A. Ganz, G. Karmi, "Lightpath communications: An approach to high bandwidth optical WAN's," IEEE Trans. Commun. 40, 1171-1182 (1992).

R. G. Smart, J. L. Zyskind, J. W. Sulhoff, D. J. DiGiovanni, "An investigation of the noise figure and conversion efficiency of 0.98 μm pumped Erbium-doped fiber amplifiers under saturated conditions," IEEE Photon. Technol. Lett. 4, 1261-1264 (1992).

H. Bulow, T. Pfeiffer, "Calculation of the noise figure of Erbium-doped fiber amplifiers using small signal attenuations and saturation powers," IEEE Photon. Technol. Lett. 4, 1351-1354 (1992).

1990

R. I. Laming, D. N. Payne, "Noise characteristic of Erbium-doped fiber amplifier pumped at 980 nm," IEEE Photon. Technol. Lett. 2, 418-421 (1990).

1986

F. P. Kelly, "Block probabilities in large circuit-switched networks," Adv. Appl. Probab. 18, 473-505 (1986).

Adv. Appl. Probab.

F. P. Kelly, "Block probabilities in large circuit-switched networks," Adv. Appl. Probab. 18, 473-505 (1986).

Electron. Lett.

M. S. Lee, I. K. Hwang, B. Y. Kim, "Bidirectional wavelength-selective optical isolator," Electron. Lett. 37, 910-912 (2001).

IEEE Photon. Technol. Lett.

A. V. Tran, C. J. Chae, R. S. Tucker, "A bidirectional optical add-drop multiplexer with gain using multiport circulators, fiber Bragg gratings, and a single unidirectional optical amplifier," IEEE Photon. Technol. Lett. 17, 975-977 (2003).

S. K. Liaw, K. P. Ho, C. Lin, S. Chi, "Multichannel bidirectional transmission using a WDM MUX/DMUX pair and unidirectional in-line amplifiers," IEEE Photon. Technol. Lett. 9, 1664-1666 (1997).

R. G. Smart, J. L. Zyskind, J. W. Sulhoff, D. J. DiGiovanni, "An investigation of the noise figure and conversion efficiency of 0.98 μm pumped Erbium-doped fiber amplifiers under saturated conditions," IEEE Photon. Technol. Lett. 4, 1261-1264 (1992).

IEEE J. Sel. Areas Commun.

C. S. Xin, C. M. Qiao, S. Dixit, "Traffic grooming in mesh WDM optical networks – Performance analysis," IEEE J. Sel. Areas Commun. 22, 1658-1669 (2004).

IEEE J. Sel. Topics Quantum Electron.

M. N. Islam, "Raman amplifiers for telecommunications," IEEE J. Sel. Topics Quantum Electron. 8, 548-559 (2002).

IEEE Network

K. Thompson, G. J. Miller, R. Wilder, "Wide-area Internet traffic patterns and characteristics," IEEE Network 10-27 (1997).

IEEE Photon. Technol. Lett.

S. B. Park, C. H. Lee, S. G. Kang, S. B. Lee, "Bidirectional WDM self-healing ring network for hub/remote nodes," IEEE Photon. Technol. Lett. 15, 1657-1659 (2003).

R. I. Laming, D. N. Payne, "Noise characteristic of Erbium-doped fiber amplifier pumped at 980 nm," IEEE Photon. Technol. Lett. 2, 418-421 (1990).

J. Kim, "1100×1100 port MEMS-based optical crossconnect with 4-dB maximum loss," IEEE Photon. Technol. Lett. 5, 537-1539 (2003).

IEEE Photon. Technol. Lett.

H. Bulow, T. Pfeiffer, "Calculation of the noise figure of Erbium-doped fiber amplifiers using small signal attenuations and saturation powers," IEEE Photon. Technol. Lett. 4, 1351-1354 (1992).

C. H. Kim, C. H. Lee, Y. C. Chung, "A novel bidirectional add/drop amplifier (BADA)," IEEE Photon. Technol. Lett. 10, 1118-1120 (1998).

L. D. Garrett, "Bidirectional ULH transmission of 160-Gb/s full-duplex capacity over 5000 km in a fully bidirectional recirculating loop," IEEE Photon. Technol. Lett. 16, 1757-1759 (2004).

C. H. Chang, Y. K. Chen, "Demonstration of repeaterless bidirectional transmission of multiple AM-VSB CATV signals over conventional single-mode fiber," IEEE Photon. Technol. Lett. 12, 734-736 (2000).

H. H. Lu, H. L. Ma, C. T. Lee, "A bidirectional hybrid DWDM system for CATV and OC-48 trunking," IEEE Photon. Technol. Lett. 13, 902-904 (2001).

C. H. Kim, C. H. Lee, Y. C. Chung, "Bidirectional WDM self-healing ring network based on simple bidirectional add/drop amplifier modules," IEEE Photon. Technol. Lett. 10, 1340-1342 (1998).

M. Oskar van Deventer, O. J. Koning, "Bidirectional transmission using an erbium-doped fiber amplifier without optical isolators," IEEE Photon. Technol. Lett. 7, 1372-1274 (1995).

J. Kim, B. Lee, "Independently switchable bidirectional optical cross connects," IEEE Photon. Technol. Lett. 12, 693-695 (2000).

IEEE Trans. Commun.

I. Chlamtac, A. Ganz, G. Karmi, "Lightpath communications: An approach to high bandwidth optical WAN's," IEEE Trans. Commun. 40, 1171-1182 (1992).

IEEE/ACM Trans. Netw.

V. Paxson, "End-to-end Internet packet dynamics," IEEE/ACM Trans. Netw. 7, 277-292 (1999).

IET Optoelectron.

M. Karasek, J. Vojtech, J. Radil, "Bidirectional repeaterless transmission of 8×10 GE over 210 km of standard single mode fibre," IET Optoelectron. 1, 96-100 (2007).

J. Lightw. Technol.

S. J. B. Yoo, "Optical packet and burst switching technologies for the future photonic Internet," J. Lightw. Technol. 24, 4468-4492 (2006).

J. Opt. Netw.

S. Sygletos, I. Tomkos, J. Leuthold, "Technological challenges on the road toward transparent networking," J. Opt. Netw. 7, 321-350 (2008).

J. Lightw. Technol.

H. Yuan, W. D. Zhong, W. Hu, "FBG-based bidirectional optical cross connects for bidirectional WDM ring networks," J. Lightw. Technol. 22, 2710-2721 (2004).

J. Lightw. Technol.

S. Kim, "Bidirectional optical cross connects for multiwavelength ring networks using single arrayed waveguide grating router," J. Lightw. Technol. 20, 188-194 (2002).

K. C. Lee, V. O. K. Li, "A wavelength-convertible optical network," J. Lightw. Technol. 11, 962-970 (1993).

J. Berthold, A. A. M. Saleh, L. Blair, J. M. Simmons, "Optical networking: Past, present, and future," J. Lightw. Technol. 26, 1104-1118 (2008).

J. Opt. Networking

S. K. Liaw, "Bidirectional reconfigurable optical add-drop multiplexer with power compensation built-in optical amplifiers," J. Opt. Networking 7, 662-672 (2008).

J. Sel. Areas Commun.

X. Sun, "A single-fiber biDirectional WDM self-healing ring network with bidirectional OADM for metro-access applications," J. Sel. Areas Commun. 25, 18-24 (2007).

Opt. Fiber Technol.

X. K. Hu, "A wavelength selective bidirectional isolator for access optical networks," Opt. Fiber Technol. 17, 191-195 (2011).

Proc. IEEE

A. Gladisch, "System and core network architecture," Proc. IEEE 94, 869-981 (2006).

Other

Spectral Grids for WDM Applications: DWDM Frequency Grid ITU-T G.694.1 (2002).

G. Maier, A. Feldmann, V. Paxson, M. Allman, "On dominant characteristics of residential broadband Internet traffic," Proc. 9th ACM SIGCOMM Conf. Internet Measurement Conf. (IMC 2009) (2009) pp. 90-102.

B. Wolshon, L. Lambert, “NCHRP Synthesis 340 – Convertible Roadways and Lanes: A Synthesis of Highway Practice,” Transportation Research Board, National Research Council (2004).

E. K. MacHale, G. Talli, P. D. Townsend, "10 Gb/s bidirectional transmission in a 116 km reach hybrid DWDM-TDM PON," Proc. OFC 2006 (2006).

K. P. Ho, S. K. Liaw, C. Lin, "Performance of an eight-wavelength bidirectional WDM add/drop multiplexer with 80-Gbit/s capacity," Proc. OFC (1997) pp. 90-91.

Y. Shen, X. Wu, C. Lu, T. H. Cheng, M. K. Rao, "A novel single-fiber bidirectional optical add/drop multiplexer for distribution networks," Proc. OFC (2001).

S. Poole, S. Frisken, M. A. Roelens, C. Cameron, "Bandwidth-flexible ROADMs as network elements," Proc. OFC 2011 (2011).

J. M. P. Delavaux, "WDM repeaterless bidirectional transmission of 73 channels at 10 Gbit/s over 126 km of True Wave fiber," Proc. ECOC (1997) pp. 21-23.

M. H. Eiselt, "Field trial of a 1250-km private optical network based on a single-fiber, shared-amplifier WDM system," Proc. NFOEC (2006).

S. K. Liaw, P. S. Tsai, K. Y. Hsu, A. Tverjanovich, "Power-compensated 3×3 reconfigurable bidirectional multiwavelength cross-connect device based on strain tunable fiber Bragg gratings," Proc. NoC (2011).

P. Ghelfi, "Optical cross connects architecture with per-node add & drop functionality," Proc. NFOEC (2007).

M. Oskar van Deventer, Fundamentals of Bidirectional Transmission Over a Single Optical Fibre (Kluwer, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.