Abstract

This paper provides a numerical analysis of the influence of photonic crystal etching depth on the confinement factor, slope efficiency, emitted power and tuning range of single mode VCSELs. Several mechanisms were used to determine the level of power emission, namely: selective leakage, thermal focusing, the waveguide effect induced by the photonic-crystal, gain spectrum red shift, and its maximum reduction with the increase of driving currents. We show that careful design of the photonic crystal allows for a 10% increase in the emitted power of a single-mode regime and for a broad range of steering currents from 5 to 50 mA. Such attributes support tuning of a single-mode emission beyond the 20 nm spectrum range.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, K. J. Ebeling, "4.8 mW singlemode oxide confined topsurface emitting vertical cavity laser diode," Electron. Lett. 33, 1790-1791 (1997).
  2. A.-S. Gadallah, R. Michalzik, "High-output-power single-higher-order transverse mode VCSEL with shallow surface relief," IEEE Photon. Technol. Lett. 23, 1040-1042 (2011).
  3. D. Zhou, L. J. Mawst, "High–power single–mode antiresonant reflecting optical waveguide–type vertical–cavity surface–emitting lasers," IEEE J. Quantum Elect. 38, 1599-1606 (2002).
  4. E. Kapon, A. Sirbu, "Long–wavelength VCSELs. Power–efficient answer," Nat. Photonics 3, 27-29 (2009).
  5. A. J. Danner, J. J. Raftery Jr., T. Kim, P. O. Leisher, A. V. Giannopoulos, K. D. Choquette, "Progress in photonic crystal vertical cavity lasers," IEICE Trans. Electron. E88-C, (2005).
  6. D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. Lehman Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery Jr., A. J. Danner, A. V. Giannopoulos, K. D. Choquette, "Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays," IEEE J. Sel. Top. Quantum Electron. 15, 909-917 (2009).
  7. M. S. Alias, S. Shaari, P. O. Leisher, K. D. Choquette, "Single transverse mode control of VCSEL by photonic crystal and trench patterning," Photon. Nanostruct.: Fundam. Appl. 8, 38-46 (2010).
  8. D. F. Siriani, P. O. Leisher, K. D. Choquette, "Loss-induced confinement in photonic crystal vertical-cavity surface-emitting lasers” photonic-crystal-patterned vertical-cavity surface-emitting laser structures," IEEE. J. Quantum Electron. 45, 762-768 (2009).
  9. T. Czyszanowski, R. P. Sarzała, M. Dems, H. Thienpont, W. Nakwaski, K. Panajotov, "Strong modes discrimination and low threshold in cw regime of 1300 nm AlInGaAs/InP VCSEL induced by photonic crystal," Phys. Stat. Sol. A 206, 1396-1403 (2009).
  10. T. Czyszanowski, R. P. Sarzała, M. Dems, W. Nakwaski, K. Panajotov, "Optimal photonic-crystal parameters assuring single-mode operation of 1300 nm AlInGaAs vertical-cavity surface-emitting laser," J. Appl. Phys. 105, 093102 (2009).
  11. T. Czyszanowski, M. Dems, R. P. Sarzała, W. Nakwaski, K. Panajotov, "Precise lateral mode control in photonic crystal vertical-cavity surface-emitting lasers," IEEE. J. Quantum Electron. 47, 1291-1296 (2011).
  12. A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, W. Zheng, "Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser," Appl. Phys. Lett. 94, 191105 (2009).
  13. M. Dems, R. Kotynski, K. Panajotov, "Plane wave admittance method—Anovel approach for determining the electromagnetic modes in photonic structures," Opt. Exp. 13, 3196-3207 (2005).
  14. R. P. Sarzała, W. Nakwaski, "Optimisation of the 1.3-μm GaAs-based oxide-confined (GaIn)(Nas) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation," J. Phys: Condens. Matter 16, S3121-S3140 (2004).
  15. M. Wasiak, "Mathematical rigorous approach to simulateano over-threshold VCSEL operation," Physica E 43, 1439-1444 (2011).
  16. T. Czyszanowski, M. Dems, H. Thienpont, K. Panajotov, "Full vectorial electromagnetic modeling of vertical-cavity surface-emitting diode lasers by the plane wave admittance method," Proc. SPIE (2006) pp. 61850Y.
  17. D. Xu, C. Tong, S. F. Yoon, W. Fan, D. H. Zhang, M. Wasiak, Ł. Piskorski, K. Gutowski, R. P. Sarzała, W. Nakwaski, "Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 μm optical-fibre communication," Semicond. Sci. Technol. 24, 055003 (2009).
  18. W.-C. Ng, Y. Liu, K. Hess, "Lattice temperature model and temperature effects in oxide-confined VCSEL's," J. Comput. Electron. 3, 103-116 (2004).

2011 (3)

A.-S. Gadallah, R. Michalzik, "High-output-power single-higher-order transverse mode VCSEL with shallow surface relief," IEEE Photon. Technol. Lett. 23, 1040-1042 (2011).

T. Czyszanowski, M. Dems, R. P. Sarzała, W. Nakwaski, K. Panajotov, "Precise lateral mode control in photonic crystal vertical-cavity surface-emitting lasers," IEEE. J. Quantum Electron. 47, 1291-1296 (2011).

M. Wasiak, "Mathematical rigorous approach to simulateano over-threshold VCSEL operation," Physica E 43, 1439-1444 (2011).

2010 (1)

M. S. Alias, S. Shaari, P. O. Leisher, K. D. Choquette, "Single transverse mode control of VCSEL by photonic crystal and trench patterning," Photon. Nanostruct.: Fundam. Appl. 8, 38-46 (2010).

2009 (7)

D. F. Siriani, P. O. Leisher, K. D. Choquette, "Loss-induced confinement in photonic crystal vertical-cavity surface-emitting lasers” photonic-crystal-patterned vertical-cavity surface-emitting laser structures," IEEE. J. Quantum Electron. 45, 762-768 (2009).

T. Czyszanowski, R. P. Sarzała, M. Dems, H. Thienpont, W. Nakwaski, K. Panajotov, "Strong modes discrimination and low threshold in cw regime of 1300 nm AlInGaAs/InP VCSEL induced by photonic crystal," Phys. Stat. Sol. A 206, 1396-1403 (2009).

T. Czyszanowski, R. P. Sarzała, M. Dems, W. Nakwaski, K. Panajotov, "Optimal photonic-crystal parameters assuring single-mode operation of 1300 nm AlInGaAs vertical-cavity surface-emitting laser," J. Appl. Phys. 105, 093102 (2009).

E. Kapon, A. Sirbu, "Long–wavelength VCSELs. Power–efficient answer," Nat. Photonics 3, 27-29 (2009).

D. Xu, C. Tong, S. F. Yoon, W. Fan, D. H. Zhang, M. Wasiak, Ł. Piskorski, K. Gutowski, R. P. Sarzała, W. Nakwaski, "Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 μm optical-fibre communication," Semicond. Sci. Technol. 24, 055003 (2009).

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. Lehman Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery Jr., A. J. Danner, A. V. Giannopoulos, K. D. Choquette, "Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays," IEEE J. Sel. Top. Quantum Electron. 15, 909-917 (2009).

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, W. Zheng, "Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser," Appl. Phys. Lett. 94, 191105 (2009).

2005 (2)

M. Dems, R. Kotynski, K. Panajotov, "Plane wave admittance method—Anovel approach for determining the electromagnetic modes in photonic structures," Opt. Exp. 13, 3196-3207 (2005).

A. J. Danner, J. J. Raftery Jr., T. Kim, P. O. Leisher, A. V. Giannopoulos, K. D. Choquette, "Progress in photonic crystal vertical cavity lasers," IEICE Trans. Electron. E88-C, (2005).

2004 (2)

R. P. Sarzała, W. Nakwaski, "Optimisation of the 1.3-μm GaAs-based oxide-confined (GaIn)(Nas) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation," J. Phys: Condens. Matter 16, S3121-S3140 (2004).

W.-C. Ng, Y. Liu, K. Hess, "Lattice temperature model and temperature effects in oxide-confined VCSEL's," J. Comput. Electron. 3, 103-116 (2004).

2002 (1)

D. Zhou, L. J. Mawst, "High–power single–mode antiresonant reflecting optical waveguide–type vertical–cavity surface–emitting lasers," IEEE J. Quantum Elect. 38, 1599-1606 (2002).

1997 (1)

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, K. J. Ebeling, "4.8 mW singlemode oxide confined topsurface emitting vertical cavity laser diode," Electron. Lett. 33, 1790-1791 (1997).

Appl. Phys. Lett. (1)

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, W. Zheng, "Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser," Appl. Phys. Lett. 94, 191105 (2009).

Electron. Lett. (1)

C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Müller, K. J. Ebeling, "4.8 mW singlemode oxide confined topsurface emitting vertical cavity laser diode," Electron. Lett. 33, 1790-1791 (1997).

IEEE J. Quantum Elect. (1)

D. Zhou, L. J. Mawst, "High–power single–mode antiresonant reflecting optical waveguide–type vertical–cavity surface–emitting lasers," IEEE J. Quantum Elect. 38, 1599-1606 (2002).

IEEE J. Sel. Top. Quantum Electron. (1)

D. F. Siriani, M. P. Tan, A. M. Kasten, A. C. Lehman Harren, P. O. Leisher, J. D. Sulkin, J. J. Raftery Jr., A. J. Danner, A. V. Giannopoulos, K. D. Choquette, "Mode control in photonic crystal vertical-cavity surface-emitting lasers and coherent arrays," IEEE J. Sel. Top. Quantum Electron. 15, 909-917 (2009).

IEEE Photon. Technol. Lett. (1)

A.-S. Gadallah, R. Michalzik, "High-output-power single-higher-order transverse mode VCSEL with shallow surface relief," IEEE Photon. Technol. Lett. 23, 1040-1042 (2011).

IEEE. J. Quantum Electron. (2)

D. F. Siriani, P. O. Leisher, K. D. Choquette, "Loss-induced confinement in photonic crystal vertical-cavity surface-emitting lasers” photonic-crystal-patterned vertical-cavity surface-emitting laser structures," IEEE. J. Quantum Electron. 45, 762-768 (2009).

T. Czyszanowski, M. Dems, R. P. Sarzała, W. Nakwaski, K. Panajotov, "Precise lateral mode control in photonic crystal vertical-cavity surface-emitting lasers," IEEE. J. Quantum Electron. 47, 1291-1296 (2011).

IEICE Trans. Electron. (1)

A. J. Danner, J. J. Raftery Jr., T. Kim, P. O. Leisher, A. V. Giannopoulos, K. D. Choquette, "Progress in photonic crystal vertical cavity lasers," IEICE Trans. Electron. E88-C, (2005).

J. Appl. Phys. (1)

T. Czyszanowski, R. P. Sarzała, M. Dems, W. Nakwaski, K. Panajotov, "Optimal photonic-crystal parameters assuring single-mode operation of 1300 nm AlInGaAs vertical-cavity surface-emitting laser," J. Appl. Phys. 105, 093102 (2009).

J. Comput. Electron. (1)

W.-C. Ng, Y. Liu, K. Hess, "Lattice temperature model and temperature effects in oxide-confined VCSEL's," J. Comput. Electron. 3, 103-116 (2004).

J. Phys: Condens. Matter (1)

R. P. Sarzała, W. Nakwaski, "Optimisation of the 1.3-μm GaAs-based oxide-confined (GaIn)(Nas) vertical-cavity surface-emitting lasers for their low-threshold room-temperature operation," J. Phys: Condens. Matter 16, S3121-S3140 (2004).

Nat. Photonics (1)

E. Kapon, A. Sirbu, "Long–wavelength VCSELs. Power–efficient answer," Nat. Photonics 3, 27-29 (2009).

Opt. Exp. (1)

M. Dems, R. Kotynski, K. Panajotov, "Plane wave admittance method—Anovel approach for determining the electromagnetic modes in photonic structures," Opt. Exp. 13, 3196-3207 (2005).

Photon. Nanostruct.: Fundam. Appl. (1)

M. S. Alias, S. Shaari, P. O. Leisher, K. D. Choquette, "Single transverse mode control of VCSEL by photonic crystal and trench patterning," Photon. Nanostruct.: Fundam. Appl. 8, 38-46 (2010).

Phys. Stat. Sol. A (1)

T. Czyszanowski, R. P. Sarzała, M. Dems, H. Thienpont, W. Nakwaski, K. Panajotov, "Strong modes discrimination and low threshold in cw regime of 1300 nm AlInGaAs/InP VCSEL induced by photonic crystal," Phys. Stat. Sol. A 206, 1396-1403 (2009).

Physica E (1)

M. Wasiak, "Mathematical rigorous approach to simulateano over-threshold VCSEL operation," Physica E 43, 1439-1444 (2011).

Semicond. Sci. Technol. (1)

D. Xu, C. Tong, S. F. Yoon, W. Fan, D. H. Zhang, M. Wasiak, Ł. Piskorski, K. Gutowski, R. P. Sarzała, W. Nakwaski, "Room-temperature continuous-wave operation of the In(Ga)As/GaAs quantum-dot VCSELs for the 1.3 μm optical-fibre communication," Semicond. Sci. Technol. 24, 055003 (2009).

Other (1)

T. Czyszanowski, M. Dems, H. Thienpont, K. Panajotov, "Full vectorial electromagnetic modeling of vertical-cavity surface-emitting diode lasers by the plane wave admittance method," Proc. SPIE (2006) pp. 61850Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.