Abstract

Detecting the z-position of moving objects in an embedded microchannel is an important but highly challenging problem in the MEMS field. The present study proposes a new depth measurement system based on the chromatic aberration effect under a dark-field illumination scheme. The microchannel is illuminated by dispersed white light and the light scattered from the moving objects is captured by a low numerical aperture (N.A.) objective lens. Due to chromatic aberration effect, sample in various positions will scatter different wavelengths. The depth of each moving object is then determined by inspecting the intensity ratio of the scattered spectral components with wavelengths of 450 nm (blue light) and 670 nm (red light), respectively. Experimental results show that the proposed system enables the object depth to be measured over a range of ±15 μm while using acrylic lens for light aberration. Alternatively, the developed system is capable to discriminate the depth change of 2 μm micro-beads when a higher Abbe number material of BK7 lens is used for light aberration. The depth measurements are obtained without the need for a delicate optical system or scanning process with the developed system. The use of UV-Vis-NIR spectrometer enables this system to analyze the depths of the samples in flow velocity 500 μm/sec. The proposed system provides a straightforward yet highly effective means of determining the depth of moving objects in microfluidic channels in a continuous manner.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. van den Berg, T. S. J. Lammerink, "Micro total analysis systems: Microfluidic aspects, integration concept and applications," Microsyst. Technol. Chem. Life Sci. 194, 21-49 (1998).
  2. T. Vilkner, D. Janasek, A. Manz, "Micro total analysis systems. recent developments," Anal. Chem. 76, 3373-3385 (2004).
  3. J. K. A. Nicholson, W. M. Velleca, S. Jubert, T. A. Green, L. Bryan, "Evaluation of alternative Cd4 technologies for the enumeration of Cd4 lymphocytes," J. Immunolog. Meth. 177, 43-54 (1994).
  4. H. Radtke, S. Lindenau, B. Holbach, S. Neumann, H. Kiesewetter, "Flow cytometry for white blood-cell counts in whole-blood and blood components," Infusionstherapie Und Transfusionsmedizin 22, 112-114 (1995).
  5. S. Bottcher, M. Ritgen, M. Bruggemann, T. Raff, S. Luschen, A. Humpe, M. Kneba, C. Pott, "Flow cytometric assay for detennination of Fc gamma RIIIA-158 V/F polymorphism," J. Immunolog. Meth. 306, 128-136 (2005).
  6. E. Dekking, V. H. J. van der Velden, S. Bottcher, M. Bruggemann, E. Sonneveld, A. Koning-Goedheer, N. Boeckx, P. Lucio, L. Sedek, T. Szczepanski, T. Kalina, M. Kovac, P. Evans, P. G. Hoogeveen, J. Flores-Montero, A. Orfao, W. M. Comans-Bitter, F. J. T. Staal, J. J. M. van Dongen, "Detection of fusion genes at the protein level in leukemia patients via the flow cytometric immunobead assay," Best Practice Res. Clin. Haematol. 23, 333-345 (2010) E. C. E. FP6, L. C. 018708.
  7. C. H. Lin, G. B. Lee, "Micromachined flow cytometers with embedded etched optic fibers for optical detection," J. Micromech. Microeng. 13, 447-453 (2003).
  8. X. Li, M. R. Melamed, Z. Darzynkiewicz, "Detection of apoptosis and DNA replication by differential labeling of DNA strand breaks with fluorochromes of different color," Experimental Cell Res. 222, 28-37 (1996).
  9. H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, L. M. Fu, "Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing," Microfluid. Nanofluid. 11, 469-478 (2011).
  10. H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, J. Michelsen, C. H. Westergaard, "PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour," J. Micromech. Microeng. 12, 862-869 (2002).
  11. S. Y. Yoon, K. C. Kim, "3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept," Meas. Sci. Technol. 17, 2897-2905 (2006).
  12. S. Choi, S. H. Kim, J. K. Park, "Optical path-length modulation for three-dimensional particle measurement in mirror-embedded microchannels," Lab on a Chip 10, 335-340 (2010).
  13. R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. Technol. 17, 797-808 (2006).
  14. K. B. Shi, P. Li, S. Z. Yin, Z. W. Liu, "Chromatic confocal microscopy using supercontinuum light," Opt. Exp. 12, 2096-2101 (2004).
  15. B. S. Chun, K. Kim, D. Gweon, "Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope," Rev. Sci. Instrum. 80, (2009).
  16. P. C. Lin, P. C. Sun, L. J. Zhu, Y. Fainman, "Single-shot depth-section imaging through chromatic slit-scan confocal microscopy," Appl. Opt. 37, 6764-6770 (1998).
  17. R. Duplov, "Apochromatic telescope without anomalous dispersion glasses," Appl. Opt. 45, 5164-5167 (2006).
  18. S. W. Lin, J. H. Hsu, C. H. Chang, C. H. Lin, "Objective-type dark-field system applied to multi-wavelength capillary electrophoresis for fluorescent detection and analysis," Biosens. Bioelectron. 25, 450-455 (2009).
  19. E. Hecht, Optics (Addison-Wesley, 2002).
  20. T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, T. Takaya, "Optical material of high refractive index resin composed of sulfur-containing aromatic methacrylates," J. Appl. Polymer Sci. 76, 50-54 (2000).
  21. C. H. Lin, G. B. Lee, Y. H. Lin, G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," J. Micromechan. Microeng. 11, 726-732 (2001).

2011 (1)

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, L. M. Fu, "Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing," Microfluid. Nanofluid. 11, 469-478 (2011).

2010 (2)

E. Dekking, V. H. J. van der Velden, S. Bottcher, M. Bruggemann, E. Sonneveld, A. Koning-Goedheer, N. Boeckx, P. Lucio, L. Sedek, T. Szczepanski, T. Kalina, M. Kovac, P. Evans, P. G. Hoogeveen, J. Flores-Montero, A. Orfao, W. M. Comans-Bitter, F. J. T. Staal, J. J. M. van Dongen, "Detection of fusion genes at the protein level in leukemia patients via the flow cytometric immunobead assay," Best Practice Res. Clin. Haematol. 23, 333-345 (2010) E. C. E. FP6, L. C. 018708.

S. Choi, S. H. Kim, J. K. Park, "Optical path-length modulation for three-dimensional particle measurement in mirror-embedded microchannels," Lab on a Chip 10, 335-340 (2010).

2009 (2)

B. S. Chun, K. Kim, D. Gweon, "Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope," Rev. Sci. Instrum. 80, (2009).

S. W. Lin, J. H. Hsu, C. H. Chang, C. H. Lin, "Objective-type dark-field system applied to multi-wavelength capillary electrophoresis for fluorescent detection and analysis," Biosens. Bioelectron. 25, 450-455 (2009).

2006 (3)

R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. Technol. 17, 797-808 (2006).

S. Y. Yoon, K. C. Kim, "3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept," Meas. Sci. Technol. 17, 2897-2905 (2006).

R. Duplov, "Apochromatic telescope without anomalous dispersion glasses," Appl. Opt. 45, 5164-5167 (2006).

2005 (1)

S. Bottcher, M. Ritgen, M. Bruggemann, T. Raff, S. Luschen, A. Humpe, M. Kneba, C. Pott, "Flow cytometric assay for detennination of Fc gamma RIIIA-158 V/F polymorphism," J. Immunolog. Meth. 306, 128-136 (2005).

2004 (2)

K. B. Shi, P. Li, S. Z. Yin, Z. W. Liu, "Chromatic confocal microscopy using supercontinuum light," Opt. Exp. 12, 2096-2101 (2004).

T. Vilkner, D. Janasek, A. Manz, "Micro total analysis systems. recent developments," Anal. Chem. 76, 3373-3385 (2004).

2003 (1)

C. H. Lin, G. B. Lee, "Micromachined flow cytometers with embedded etched optic fibers for optical detection," J. Micromech. Microeng. 13, 447-453 (2003).

2002 (1)

H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, J. Michelsen, C. H. Westergaard, "PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour," J. Micromech. Microeng. 12, 862-869 (2002).

2001 (1)

C. H. Lin, G. B. Lee, Y. H. Lin, G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," J. Micromechan. Microeng. 11, 726-732 (2001).

2000 (1)

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, T. Takaya, "Optical material of high refractive index resin composed of sulfur-containing aromatic methacrylates," J. Appl. Polymer Sci. 76, 50-54 (2000).

1998 (2)

P. C. Lin, P. C. Sun, L. J. Zhu, Y. Fainman, "Single-shot depth-section imaging through chromatic slit-scan confocal microscopy," Appl. Opt. 37, 6764-6770 (1998).

A. van den Berg, T. S. J. Lammerink, "Micro total analysis systems: Microfluidic aspects, integration concept and applications," Microsyst. Technol. Chem. Life Sci. 194, 21-49 (1998).

1996 (1)

X. Li, M. R. Melamed, Z. Darzynkiewicz, "Detection of apoptosis and DNA replication by differential labeling of DNA strand breaks with fluorochromes of different color," Experimental Cell Res. 222, 28-37 (1996).

1995 (1)

H. Radtke, S. Lindenau, B. Holbach, S. Neumann, H. Kiesewetter, "Flow cytometry for white blood-cell counts in whole-blood and blood components," Infusionstherapie Und Transfusionsmedizin 22, 112-114 (1995).

1994 (1)

J. K. A. Nicholson, W. M. Velleca, S. Jubert, T. A. Green, L. Bryan, "Evaluation of alternative Cd4 technologies for the enumeration of Cd4 lymphocytes," J. Immunolog. Meth. 177, 43-54 (1994).

Anal. Chem. (1)

T. Vilkner, D. Janasek, A. Manz, "Micro total analysis systems. recent developments," Anal. Chem. 76, 3373-3385 (2004).

Appl. Opt. (2)

Best Practice Res. Clin. Haematol. (1)

E. Dekking, V. H. J. van der Velden, S. Bottcher, M. Bruggemann, E. Sonneveld, A. Koning-Goedheer, N. Boeckx, P. Lucio, L. Sedek, T. Szczepanski, T. Kalina, M. Kovac, P. Evans, P. G. Hoogeveen, J. Flores-Montero, A. Orfao, W. M. Comans-Bitter, F. J. T. Staal, J. J. M. van Dongen, "Detection of fusion genes at the protein level in leukemia patients via the flow cytometric immunobead assay," Best Practice Res. Clin. Haematol. 23, 333-345 (2010) E. C. E. FP6, L. C. 018708.

Biosens. Bioelectron. (1)

S. W. Lin, J. H. Hsu, C. H. Chang, C. H. Lin, "Objective-type dark-field system applied to multi-wavelength capillary electrophoresis for fluorescent detection and analysis," Biosens. Bioelectron. 25, 450-455 (2009).

Experimental Cell Res. (1)

X. Li, M. R. Melamed, Z. Darzynkiewicz, "Detection of apoptosis and DNA replication by differential labeling of DNA strand breaks with fluorochromes of different color," Experimental Cell Res. 222, 28-37 (1996).

Infusionstherapie Und Transfusionsmedizin (1)

H. Radtke, S. Lindenau, B. Holbach, S. Neumann, H. Kiesewetter, "Flow cytometry for white blood-cell counts in whole-blood and blood components," Infusionstherapie Und Transfusionsmedizin 22, 112-114 (1995).

J. Appl. Polymer Sci. (1)

T. Matsuda, Y. Funae, M. Yoshida, T. Yamamoto, T. Takaya, "Optical material of high refractive index resin composed of sulfur-containing aromatic methacrylates," J. Appl. Polymer Sci. 76, 50-54 (2000).

J. Immunolog. Meth. (2)

S. Bottcher, M. Ritgen, M. Bruggemann, T. Raff, S. Luschen, A. Humpe, M. Kneba, C. Pott, "Flow cytometric assay for detennination of Fc gamma RIIIA-158 V/F polymorphism," J. Immunolog. Meth. 306, 128-136 (2005).

J. K. A. Nicholson, W. M. Velleca, S. Jubert, T. A. Green, L. Bryan, "Evaluation of alternative Cd4 technologies for the enumeration of Cd4 lymphocytes," J. Immunolog. Meth. 177, 43-54 (1994).

J. Micromech. Microeng. (2)

C. H. Lin, G. B. Lee, "Micromachined flow cytometers with embedded etched optic fibers for optical detection," J. Micromech. Microeng. 13, 447-453 (2003).

H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, J. Michelsen, C. H. Westergaard, "PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour," J. Micromech. Microeng. 12, 862-869 (2002).

J. Micromechan. Microeng. (1)

C. H. Lin, G. B. Lee, Y. H. Lin, G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," J. Micromechan. Microeng. 11, 726-732 (2001).

Lab on a Chip (1)

S. Choi, S. H. Kim, J. K. Park, "Optical path-length modulation for three-dimensional particle measurement in mirror-embedded microchannels," Lab on a Chip 10, 335-340 (2010).

Meas. Sci. Technol. (2)

R. Lima, S. Wada, K. Tsubota, T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. Technol. 17, 797-808 (2006).

S. Y. Yoon, K. C. Kim, "3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept," Meas. Sci. Technol. 17, 2897-2905 (2006).

Microfluid. Nanofluid. (1)

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, L. M. Fu, "Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing," Microfluid. Nanofluid. 11, 469-478 (2011).

Microsyst. Technol. Chem. Life Sci. (1)

A. van den Berg, T. S. J. Lammerink, "Micro total analysis systems: Microfluidic aspects, integration concept and applications," Microsyst. Technol. Chem. Life Sci. 194, 21-49 (1998).

Opt. Exp. (1)

K. B. Shi, P. Li, S. Z. Yin, Z. W. Liu, "Chromatic confocal microscopy using supercontinuum light," Opt. Exp. 12, 2096-2101 (2004).

Rev. Sci. Instrum. (1)

B. S. Chun, K. Kim, D. Gweon, "Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope," Rev. Sci. Instrum. 80, (2009).

Other (1)

E. Hecht, Optics (Addison-Wesley, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.