Abstract

We show analytically as well as experimentally a technique to generate a time- and wavelength interleaved optical pulse-train (TWIPT) with tunable pulsewidth. The technique involves dispersing an initial pulse-train using a standard single-mode-fiber (SMF) followed by sectional dispersion compensation using a tunable μlti-channel dispersion compensation module. Using an initial pulse-train with a fixed repetition frequency <i>f<sub>rep</sub></i> and a tunable μlti-channel dispersion compensation module with a fixed frequency spacing between the adjacent channels, our scheme shows that by choosing appropriate value for the length of the SMF, we can generate a <i>N</i> × <i>f<sub>rep</sub></i> TWIPT in the case when there are <i>N</i> channels within the bandwidth of the initial pulses. By tuning the channel dispersion to be the opposite of the dispersion introduced by the SMF, one is able to generate transform-limited pulsewidths for the TWIPT. Furthermore, tuning the channel dispersion to other values permits pulsewidth tunability. Based on the proposed scheme, using a 2 GHz supercontinuum source as an initial pulse-train, we demonstrate the generation of a 10 × 2 GHz TWIPT with pulsewidth tunability.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription