Abstract

From scanning-electron microscope images of the cross section of a photonic-bandgap fiber (NKT Photonics' HC-1550-02) we developed a realistic model for its permittivity profile that includes all observable structural deformations in the core and in the first two rows of cladding holes. Using this more accurate index profile in our C++ full-vectorial finite-difference mode solver, we numerically studied this fiber's modal dispersion, along with the intensity profile, group index spectrum, and group-velocity dispersion spectrum of its fundamental mode. Comparisons between these predictions and their experimental counterparts measured in the fiber show good quantitative agreement for all these characteristics. On the other hand, when these structural deformations are purposely not included in the permittivity profile, the predicted and measured characteristics generally poorly match. The study demonstrates that first, accurate siμltaneous predictions of several key modal characteristics of hollow-core fibers can be obtained numerically, and that although small, the aforementioned index-profile perturbations μst be included in order to obtain sufficient accuracy.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
  2. S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightw. Technol. 25, 861-865 (2007).
  3. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensesn, T. Hansesn, H. Simonsesn, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).
  4. T. J. Stephens, R. R. Maier, J. S. Barton, J. D. C. Jones, "Fused silica hollow-core photonic crystal fibre for mid-infrared transmission," Conference on Lasers and Electro-Optics (CLEO), Postconference Digest San FranciscoCAUSA (2004) Paper CPDD4.
  5. M. Koshiba, K. Saitoh, "Numerical verification of degeneracy in hexagonal photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).
  6. V. Dangui, M. J. F. Digonnet, G. S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Exp. 14, 2979-2993 (2006).
  7. Z. Zhu, T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Exp. 10, 853-864 (2002).
  8. W. Zhi, R. Guobin, L. Shuqin, J. Shuishen, "Supercell lattice method for photonic crystal fibers," Opt. Exp. 11, 980-991 (2003).
  9. M. Koshiba, K. Saitoh, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," J. Quantum Electron. 38, 927-933 (2002).
  10. T. P. White, R. McPhedran, L. Botten, G. Smith, C. M. de Sterke, "Calculations of air-guided modes in photonic crystal fibers using the μltipole method," Opt. Exp. 9, 721-732 (2001).
  11. F. Poletti, N. G. R. Broderick, D. J. Richardson, T. M. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Exp. 13, 9115-9124 (2005).
  12. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Exp. 14, 7974-7985 (2006).
  13. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
  14. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Exp. 12, 1485-1496 (2004).
  15. M. J. Li, J. A. West, K. W. Koch, "Modeling effects of structural distortions on air-core photonic bandgap fibers," J. Lightw. Technol. 25, 2463-2468 (2007).
  16. M. N. Petrovich, F. Poletti, A. van Brakel, D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Exp. 16, 4337-4346 (2008).
  17. K. Saitoh, N. A. Mortensen, M. Koshiba, "Air-core photonic band-gap fibers: The impact of surface modes," Opt. Exp. 12, 394-400 (2004).
  18. T. A. Birks, G. J. Pearce, D. M. Bird, "Approximate band structure calculation for photonic bandgap fibers," Opt. Exp. 14, 9483-9490 (2006).
  19. K. Zamani Aghaie, S. Fan, M. J. F. Digonnet, "Birefringence analysis of photonic-bandgap fibers using the hexagonal Yee's cell," IEEE J. Quantum Electron. 46, 920-930 (2010).
  20. K. Zamani Aghaie, M. J. F. Digonnet, S. Fan, "Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers," Opt. Lett. 35, 1938-1940 (2010).
  21. NKT Photonics' HC-1550-02 Datasheet http://www.nktphotonics.com/files/files/HC-1550-02.pdf.
  22. F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, P. St. J. Russell, "Visualizing the photonic band gap in hollow core photonic crystal fibers," Opt. Exp. 13, 558-563 (2005).
  23. R. P. Feynman, "Forces in molecules," Phys. Rev. 56, 340-343 (1939).
  24. H. Wen, M. Terrel, S. Fan, M. J. F. Digonnet, "Sensing with slow light in fiber Bragg gratings," IEEE Sensors J. 12, 156-163 (2012).

2012 (1)

H. Wen, M. Terrel, S. Fan, M. J. F. Digonnet, "Sensing with slow light in fiber Bragg gratings," IEEE Sensors J. 12, 156-163 (2012).

2010 (2)

K. Zamani Aghaie, M. J. F. Digonnet, S. Fan, "Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers," Opt. Lett. 35, 1938-1940 (2010).

K. Zamani Aghaie, S. Fan, M. J. F. Digonnet, "Birefringence analysis of photonic-bandgap fibers using the hexagonal Yee's cell," IEEE J. Quantum Electron. 46, 920-930 (2010).

2008 (1)

M. N. Petrovich, F. Poletti, A. van Brakel, D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Exp. 16, 4337-4346 (2008).

2007 (2)

M. J. Li, J. A. West, K. W. Koch, "Modeling effects of structural distortions on air-core photonic bandgap fibers," J. Lightw. Technol. 25, 2463-2468 (2007).

S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightw. Technol. 25, 861-865 (2007).

2006 (4)

V. Dangui, M. J. F. Digonnet, G. S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Exp. 14, 2979-2993 (2006).

F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Exp. 14, 7974-7985 (2006).

T. A. Birks, G. J. Pearce, D. M. Bird, "Approximate band structure calculation for photonic bandgap fibers," Opt. Exp. 14, 9483-9490 (2006).

2005 (2)

F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, P. St. J. Russell, "Visualizing the photonic band gap in hollow core photonic crystal fibers," Opt. Exp. 13, 558-563 (2005).

F. Poletti, N. G. R. Broderick, D. J. Richardson, T. M. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Exp. 13, 9115-9124 (2005).

2004 (3)

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensesn, T. Hansesn, H. Simonsesn, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).

K. Saitoh, N. A. Mortensen, M. Koshiba, "Air-core photonic band-gap fibers: The impact of surface modes," Opt. Exp. 12, 394-400 (2004).

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Exp. 12, 1485-1496 (2004).

2003 (2)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).

W. Zhi, R. Guobin, L. Shuqin, J. Shuishen, "Supercell lattice method for photonic crystal fibers," Opt. Exp. 11, 980-991 (2003).

2002 (2)

M. Koshiba, K. Saitoh, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," J. Quantum Electron. 38, 927-933 (2002).

Z. Zhu, T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Exp. 10, 853-864 (2002).

2001 (2)

M. Koshiba, K. Saitoh, "Numerical verification of degeneracy in hexagonal photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).

T. P. White, R. McPhedran, L. Botten, G. Smith, C. M. de Sterke, "Calculations of air-guided modes in photonic crystal fibers using the μltipole method," Opt. Exp. 9, 721-732 (2001).

1939 (1)

R. P. Feynman, "Forces in molecules," Phys. Rev. 56, 340-343 (1939).

IEEE J. Quantum Electron. (1)

K. Zamani Aghaie, S. Fan, M. J. F. Digonnet, "Birefringence analysis of photonic-bandgap fibers using the hexagonal Yee's cell," IEEE J. Quantum Electron. 46, 920-930 (2010).

IEEE Photon. Technol. Lett. (1)

M. Koshiba, K. Saitoh, "Numerical verification of degeneracy in hexagonal photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).

IEEE Sensors J. (1)

H. Wen, M. Terrel, S. Fan, M. J. F. Digonnet, "Sensing with slow light in fiber Bragg gratings," IEEE Sensors J. 12, 156-163 (2012).

J. Lightw. Technol. (1)

M. J. Li, J. A. West, K. W. Koch, "Modeling effects of structural distortions on air-core photonic bandgap fibers," J. Lightw. Technol. 25, 2463-2468 (2007).

J. Lightw. Technol. (1)

S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightw. Technol. 25, 861-865 (2007).

J. Quantum Electron. (1)

M. Koshiba, K. Saitoh, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," J. Quantum Electron. 38, 927-933 (2002).

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).

Opt. Exp. (3)

Z. Zhu, T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Exp. 10, 853-864 (2002).

T. A. Birks, G. J. Pearce, D. M. Bird, "Approximate band structure calculation for photonic bandgap fibers," Opt. Exp. 14, 9483-9490 (2006).

T. P. White, R. McPhedran, L. Botten, G. Smith, C. M. de Sterke, "Calculations of air-guided modes in photonic crystal fibers using the μltipole method," Opt. Exp. 9, 721-732 (2001).

Opt. Exp. (9)

F. Poletti, N. G. R. Broderick, D. J. Richardson, T. M. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Exp. 13, 9115-9124 (2005).

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Exp. 14, 7974-7985 (2006).

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensesn, T. Hansesn, H. Simonsesn, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).

V. Dangui, M. J. F. Digonnet, G. S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Exp. 14, 2979-2993 (2006).

M. N. Petrovich, F. Poletti, A. van Brakel, D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Exp. 16, 4337-4346 (2008).

K. Saitoh, N. A. Mortensen, M. Koshiba, "Air-core photonic band-gap fibers: The impact of surface modes," Opt. Exp. 12, 394-400 (2004).

W. Zhi, R. Guobin, L. Shuqin, J. Shuishen, "Supercell lattice method for photonic crystal fibers," Opt. Exp. 11, 980-991 (2003).

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Exp. 12, 1485-1496 (2004).

F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, P. St. J. Russell, "Visualizing the photonic band gap in hollow core photonic crystal fibers," Opt. Exp. 13, 558-563 (2005).

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).

Phys. Rev. (1)

R. P. Feynman, "Forces in molecules," Phys. Rev. 56, 340-343 (1939).

Other (2)

NKT Photonics' HC-1550-02 Datasheet http://www.nktphotonics.com/files/files/HC-1550-02.pdf.

T. J. Stephens, R. R. Maier, J. S. Barton, J. D. C. Jones, "Fused silica hollow-core photonic crystal fibre for mid-infrared transmission," Conference on Lasers and Electro-Optics (CLEO), Postconference Digest San FranciscoCAUSA (2004) Paper CPDD4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.