Abstract

In this paper, a monotonic-increasing-thickness model (MITM) is proposed for designing cylindrically diffractive focusing micromirrors (DFMs) and cylindrically diffractive focusing micromirror arrays (arrayed DFMs). Based on rigorous electromagnetic theory and the boundary element method, numerical results reveal that focal properties of the designed DFMs are significantly improved through replacing the traditional equal-thickness model (ETM) with the proposed MITM, especially in the case of small <i>f</i>-numbers. In addition, the superiority of the MITM to the ETM is demonstrated in designs of the arrayed DFMs. For interference effect in the arrayed DFMs, we present new explanations.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Haidner, S. Schröter, H. Bartelt, "The optimization of diffractive binary mirrors with low focal length: Diameter ratios," J. Phys. D 30, 1314-1325 (1997).
  2. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, "Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors," J. Opt. Soc. Amer. A 16, 113-130 (1999).
  3. M. Testorf, "On the zero-thickness model of diffractive optical elements," J. Opt. Soc. Amer. A 17, 1132-1133 (2000).
  4. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, "Focusing diffractive cylindrical mirrors: Rigorous evaluation of various design methods," J. Opt. Soc. Amer. A 18, 1487-1494 (2001).
  5. J. S. Ye, Y. Zhang, K. Hane, "Improved first rayleigh-sommerfeld method applied to metallic focusing micro mirrors," Opt. Exp. 17, 7348-7360 (2009).
  6. J. S. Ye, Y. Zhang, "Rigorous electromagnetic analysis of metallic cylindrical focusing micromirrors with high diffraction efficiency, achromatic aberration and long focal depth," Opt. Commun. 283, 1661-1667 (2010).
  7. K. Hirayama, E. N. Glytsis, T. K. Gaylord, "Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings," J. Opt. Soc. Amer. A 14, 907-917 (1997).
  8. J. Yan, S. T. Kowel, H. J. Cho, C. H. Ahn, "Real-time full-color three-dimensional display with a micromirror array," Opt. Lett. 26, 1075-1077 (2001).
  9. G. A. Mei, J. S. Ye, Y. Zhang, J. Lin, "Metallic cylindrical focusing micromirrors with long axial focal depth or increased lateral resolution," J. Opt. Soc. Amer. A 28, 1051-1057 (2011).
  10. J. Liu, B. Y. Gu, B. Z. Dong, G. Z. Yang, "Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory," J. Opt. Soc. Amer. A 18, 526-536 (2001).
  11. J. Lin, J. S. Ye, S. T. Liu, "Rigorous electromagnetic analysis of dual-closed-surface microlens arrays," Opt. Commun. 278, 232-239 (2007).
  12. K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, "Rigorous electromagnetic analysis of diffractive cylindrical lenses," J. Opt. Soc. Amer. A 13, 2219-2231 (1996).
  13. Handbook of Optical Constants of Solids (Academic Press, 1985).
  14. J. W. He, G. A. Mei, J. S. Ye, Y. Zhang, "Validity range of the improved rayleigh-sommerfeld method in analyzing metallic cylindrical focusing micromirrors," Opt. Commun. 291, 359-365 (2013).
  15. J. S. Ye, B. Z. Dong, B. Y. Gu, S. T. Liu, "Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations," Appl. Opt. 43, 5183-5192 (2004).

2013 (1)

J. W. He, G. A. Mei, J. S. Ye, Y. Zhang, "Validity range of the improved rayleigh-sommerfeld method in analyzing metallic cylindrical focusing micromirrors," Opt. Commun. 291, 359-365 (2013).

2011 (1)

G. A. Mei, J. S. Ye, Y. Zhang, J. Lin, "Metallic cylindrical focusing micromirrors with long axial focal depth or increased lateral resolution," J. Opt. Soc. Amer. A 28, 1051-1057 (2011).

2010 (1)

J. S. Ye, Y. Zhang, "Rigorous electromagnetic analysis of metallic cylindrical focusing micromirrors with high diffraction efficiency, achromatic aberration and long focal depth," Opt. Commun. 283, 1661-1667 (2010).

2009 (1)

J. S. Ye, Y. Zhang, K. Hane, "Improved first rayleigh-sommerfeld method applied to metallic focusing micro mirrors," Opt. Exp. 17, 7348-7360 (2009).

2007 (1)

J. Lin, J. S. Ye, S. T. Liu, "Rigorous electromagnetic analysis of dual-closed-surface microlens arrays," Opt. Commun. 278, 232-239 (2007).

2004 (1)

2001 (3)

J. Liu, B. Y. Gu, B. Z. Dong, G. Z. Yang, "Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory," J. Opt. Soc. Amer. A 18, 526-536 (2001).

J. Yan, S. T. Kowel, H. J. Cho, C. H. Ahn, "Real-time full-color three-dimensional display with a micromirror array," Opt. Lett. 26, 1075-1077 (2001).

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, "Focusing diffractive cylindrical mirrors: Rigorous evaluation of various design methods," J. Opt. Soc. Amer. A 18, 1487-1494 (2001).

2000 (1)

M. Testorf, "On the zero-thickness model of diffractive optical elements," J. Opt. Soc. Amer. A 17, 1132-1133 (2000).

1999 (1)

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, "Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors," J. Opt. Soc. Amer. A 16, 113-130 (1999).

1997 (2)

H. Haidner, S. Schröter, H. Bartelt, "The optimization of diffractive binary mirrors with low focal length: Diameter ratios," J. Phys. D 30, 1314-1325 (1997).

K. Hirayama, E. N. Glytsis, T. K. Gaylord, "Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings," J. Opt. Soc. Amer. A 14, 907-917 (1997).

1996 (1)

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, "Rigorous electromagnetic analysis of diffractive cylindrical lenses," J. Opt. Soc. Amer. A 13, 2219-2231 (1996).

Appl. Opt. (1)

J. Opt. Soc. Amer. A (3)

G. A. Mei, J. S. Ye, Y. Zhang, J. Lin, "Metallic cylindrical focusing micromirrors with long axial focal depth or increased lateral resolution," J. Opt. Soc. Amer. A 28, 1051-1057 (2011).

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, "Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors," J. Opt. Soc. Amer. A 16, 113-130 (1999).

K. Hirayama, E. N. Glytsis, T. K. Gaylord, "Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings," J. Opt. Soc. Amer. A 14, 907-917 (1997).

J. Phys. D (1)

H. Haidner, S. Schröter, H. Bartelt, "The optimization of diffractive binary mirrors with low focal length: Diameter ratios," J. Phys. D 30, 1314-1325 (1997).

J. Opt. Soc. Amer. A (1)

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, "Rigorous electromagnetic analysis of diffractive cylindrical lenses," J. Opt. Soc. Amer. A 13, 2219-2231 (1996).

J. Opt. Soc. Amer. A (1)

M. Testorf, "On the zero-thickness model of diffractive optical elements," J. Opt. Soc. Amer. A 17, 1132-1133 (2000).

J. Opt. Soc. Amer. A (2)

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, "Focusing diffractive cylindrical mirrors: Rigorous evaluation of various design methods," J. Opt. Soc. Amer. A 18, 1487-1494 (2001).

J. Liu, B. Y. Gu, B. Z. Dong, G. Z. Yang, "Interference effect of dual diffractive cylindrical microlenses analyzed by rigorous electromagnetic theory," J. Opt. Soc. Amer. A 18, 526-536 (2001).

Opt. Commun. (3)

J. Lin, J. S. Ye, S. T. Liu, "Rigorous electromagnetic analysis of dual-closed-surface microlens arrays," Opt. Commun. 278, 232-239 (2007).

J. W. He, G. A. Mei, J. S. Ye, Y. Zhang, "Validity range of the improved rayleigh-sommerfeld method in analyzing metallic cylindrical focusing micromirrors," Opt. Commun. 291, 359-365 (2013).

J. S. Ye, Y. Zhang, "Rigorous electromagnetic analysis of metallic cylindrical focusing micromirrors with high diffraction efficiency, achromatic aberration and long focal depth," Opt. Commun. 283, 1661-1667 (2010).

Opt. Exp. (1)

J. S. Ye, Y. Zhang, K. Hane, "Improved first rayleigh-sommerfeld method applied to metallic focusing micro mirrors," Opt. Exp. 17, 7348-7360 (2009).

Opt. Lett. (1)

Other (1)

Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.