Abstract

An experimental study of the dynamics of a quantum-dash Fabry-Pérot passively mode-locked laser diode is presented. Firstly, the switching on and off characteristic times of the mode-locking mechanism with pulsed biasing current are assessed. Secondly, the locking and unlocking characteristic times to the injection of a 10-Gbps pseudo-random binary sequence of nonreturn-to-zero data are determined. The dynamics is analysed through the instantaneous frequency of the ~40 GHz beat-tone signal measured at the output of the laser under investigation, which after a frequency down-conversion stage, is recorded by a real-time oscilloscope. Experimental results indicate that a time of 5 ns characterizes the establishment of the passive mode-locking mechanism for a pulsed biasing current. A time of 20 ns has been measured for the synchronization of the quantum-dash laser diode to the injected 10 Gbps data sequence. In addition, the mode-locked laser diode de-synchronizes and switches to the free-running condition in also 20 ns after a holding time of ~100 ns.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription