Abstract

We propose a novel type of photonic crystal cavity with a flattened and elongated central hole. The confinement capability of the cavity for the TE mode is studied using the 2D-FDTD method. The holes immediately around the cavity are shifted in a space modulation scheme in order to optimize the confinement capability of the proposed cavity. The change in the spatial confinement as well as quality factor of the cavity with respect to modulation depth are studied and reported. The ferroelectric Barium Titanate BaTiO<sub>3</sub>, which has a large electrooptic coefficient, is used as the base material of the proposed cavity. The effect of applied bias on the properties of the cavity is also studied. To make the calculations as realistic as possible, the dispersive and absorptive nature of the material has been taken into account. Despite the absorptive nature of BaTiO<sub>3</sub> as well as the finite extent of the photonic crystal, the calculated quality factor compares favorably with previously reported values in literature.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. N. V. Trivino, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butte, R. Houdre, N. Grandjea, "High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate," Appl. Phys. Lett. 100, (2012) Art. ID 071103.
  2. B. Desiatov, I. Goykhman, U. Levy, "Parabolic tapered photonic crystal cavity in silicon," Appl. Phys. Lett. 100, (2012) Art. ID 041112.
  3. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. LonCar, "Photonic crystal nanobeam lasers," Appl. Phys. Lett. 97, (2010) Art. ID 051104.
  4. D.-U. Kim, S. Kim, J. Lee, S.-R. Jeon, H. Jeon, "Free-standing GaN-based photonic crystal band-edge laser," IEEE Photon. Technol. Lett. 23, 1454-1456 (2011).
  5. R. Shankar, R. Leijssen, I. Bulu, M. Lon\vcar, "Mid-infrared photonic crystal cavities in silicon," Opt. Exp. 19, 5579-5586 (2011).
  6. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, J. VuCkovic, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, (2008) Art. ID 043123.
  7. E.-A. Dorjgotov, A. K. Bhowmik, P. J. Bos, "High tunability mixed order photonic crystal," Appl. Phys. Lett. 96, (2010) Art. ID 163507.
  8. T. Buß, M. B. Christiansen, C. L. Smith, A. Kristensen, "Liquid crystal tunable photonic crystal dye laser," Proc. OSA Conf. Lasers and Electro-Opt. (2010) pp. CWM6.
  9. K. Dayal, K. Bhattacharya, "Active tuning of photonic device characteristics during operation by ferroelectric domain switching," J. Appl. Phys. 102, (2007) Art. ID 064102.
  10. I. Soten, H. Miguez, S. Yang, S. Petrov, N. Coombs, N. Tetreault, N. Matsuura, H. Ruda, G. Ozin, "Barium Titanate inverted opals—Synthesis, characterization, and optical properties," Adv. Funct. Mater. 12, 71-77 (2002).
  11. Z. Liu, P.-T. Lin, B. W. Wessels, F. Yi, S.-T. Ho, "Nonlinear photonic crystal waveguide structures based on Barium Titanate thin films and their optical properties," Appl. Phys. Lett. 90, (2007) Art. ID 201104.
  12. P. T. Lin, "Two-dimensional ferroelectric photonic crystal waveguides: Simulation, fabrication, and optical characterization," J. Lightw. Technol. 27, 4330-4337 (2009).
  13. C. Wang, Y. Tseng, J.-I. Chyi, W.-Y. Chen, T. Hsu, M. Shih, "Single mode operation 1.3 μm InAs quantum dot lasers based on small mode volume ql2 photonic crystal nano-cavity," Proc. IEEE 4th Int. Nanoelectron. Conf. (2011) pp. 1-2.
  14. H.-Y. Ryu, M. Notomi, Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
  15. K. Nozaki, T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, (2006) Art. ID 211101.
  16. Y. Akahane, T. Asano, B.-S. Song, "High-q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
  17. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).
  18. M.-Y. Chen, H.-C. Chang, "Determination of surface plasmon modes and guided modes supported by periodic subwavelength slits on metals using a finite-difference frequency-domain method based eigenvalue algorithm," J. Lightw. Technol. 30, 76-83 (2012).
  19. M.-Q. Cai, Z. Yin, M.-S. Zhang, "First-principles study of optical properties of Barium Titanate," App. Phys. Lett. 83, 2805-2807 (2003).
  20. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, H. A. Atwater, "Electrooptic modulation in thin film barium titanate plasmonic interferometers," Nano Lett. 8, 4048-4052 (2008).
  21. M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Negro, J. Vuckovic, "Photonic crystal and plasmonic silicon-based light sources," IEEE J. Sel. Topics Quantum Electron. 16, 132-140 (2010).
  22. A. V. Giannopoulos, C. Long, K. D. Choquette, "Photonic crystal heterostructure cavity lasers," Proc. Conf. Lasers and Electro-Optics/Quantum Electron. Laser Science Conf. Photonic Applic. Syst. Technologies (2008).
  23. M. El Kurdi, X. Checoury, T.-P. Ngo, S. David, O. Boucaud, P. amd Kermarrec, Y. Campidelli, D. Bensahel, "High-quality factor photonic crystal nanocavities probed with SiGe/Si self-assembled islands," Proc. IEEE 4th Int. Conf. Group IV Photon. (2007) pp. 1-3.
  24. X. Chew, G. Zhou, F. S. Chau, J. Deng, "Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities," IEEE Photon. Technol. Lett. 23, 1310-1312 (2011).

2012 (3)

N. V. Trivino, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butte, R. Houdre, N. Grandjea, "High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate," Appl. Phys. Lett. 100, (2012) Art. ID 071103.

B. Desiatov, I. Goykhman, U. Levy, "Parabolic tapered photonic crystal cavity in silicon," Appl. Phys. Lett. 100, (2012) Art. ID 041112.

M.-Y. Chen, H.-C. Chang, "Determination of surface plasmon modes and guided modes supported by periodic subwavelength slits on metals using a finite-difference frequency-domain method based eigenvalue algorithm," J. Lightw. Technol. 30, 76-83 (2012).

2011 (3)

D.-U. Kim, S. Kim, J. Lee, S.-R. Jeon, H. Jeon, "Free-standing GaN-based photonic crystal band-edge laser," IEEE Photon. Technol. Lett. 23, 1454-1456 (2011).

R. Shankar, R. Leijssen, I. Bulu, M. Lon\vcar, "Mid-infrared photonic crystal cavities in silicon," Opt. Exp. 19, 5579-5586 (2011).

X. Chew, G. Zhou, F. S. Chau, J. Deng, "Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities," IEEE Photon. Technol. Lett. 23, 1310-1312 (2011).

2010 (3)

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. LonCar, "Photonic crystal nanobeam lasers," Appl. Phys. Lett. 97, (2010) Art. ID 051104.

E.-A. Dorjgotov, A. K. Bhowmik, P. J. Bos, "High tunability mixed order photonic crystal," Appl. Phys. Lett. 96, (2010) Art. ID 163507.

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Negro, J. Vuckovic, "Photonic crystal and plasmonic silicon-based light sources," IEEE J. Sel. Topics Quantum Electron. 16, 132-140 (2010).

2009 (1)

P. T. Lin, "Two-dimensional ferroelectric photonic crystal waveguides: Simulation, fabrication, and optical characterization," J. Lightw. Technol. 27, 4330-4337 (2009).

2008 (2)

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, J. VuCkovic, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, (2008) Art. ID 043123.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, H. A. Atwater, "Electrooptic modulation in thin film barium titanate plasmonic interferometers," Nano Lett. 8, 4048-4052 (2008).

2007 (3)

Z. Liu, P.-T. Lin, B. W. Wessels, F. Yi, S.-T. Ho, "Nonlinear photonic crystal waveguide structures based on Barium Titanate thin films and their optical properties," Appl. Phys. Lett. 90, (2007) Art. ID 201104.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).

K. Dayal, K. Bhattacharya, "Active tuning of photonic device characteristics during operation by ferroelectric domain switching," J. Appl. Phys. 102, (2007) Art. ID 064102.

2006 (1)

K. Nozaki, T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, (2006) Art. ID 211101.

2003 (3)

Y. Akahane, T. Asano, B.-S. Song, "High-q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

M.-Q. Cai, Z. Yin, M.-S. Zhang, "First-principles study of optical properties of Barium Titanate," App. Phys. Lett. 83, 2805-2807 (2003).

H.-Y. Ryu, M. Notomi, Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).

2002 (1)

I. Soten, H. Miguez, S. Yang, S. Petrov, N. Coombs, N. Tetreault, N. Matsuura, H. Ruda, G. Ozin, "Barium Titanate inverted opals—Synthesis, characterization, and optical properties," Adv. Funct. Mater. 12, 71-77 (2002).

Adv. Funct. Mater. (1)

I. Soten, H. Miguez, S. Yang, S. Petrov, N. Coombs, N. Tetreault, N. Matsuura, H. Ruda, G. Ozin, "Barium Titanate inverted opals—Synthesis, characterization, and optical properties," Adv. Funct. Mater. 12, 71-77 (2002).

App. Phys. Lett. (1)

M.-Q. Cai, Z. Yin, M.-S. Zhang, "First-principles study of optical properties of Barium Titanate," App. Phys. Lett. 83, 2805-2807 (2003).

Appl. Phys. Lett. (8)

Z. Liu, P.-T. Lin, B. W. Wessels, F. Yi, S.-T. Ho, "Nonlinear photonic crystal waveguide structures based on Barium Titanate thin films and their optical properties," Appl. Phys. Lett. 90, (2007) Art. ID 201104.

N. V. Trivino, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butte, R. Houdre, N. Grandjea, "High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate," Appl. Phys. Lett. 100, (2012) Art. ID 071103.

B. Desiatov, I. Goykhman, U. Levy, "Parabolic tapered photonic crystal cavity in silicon," Appl. Phys. Lett. 100, (2012) Art. ID 041112.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. LonCar, "Photonic crystal nanobeam lasers," Appl. Phys. Lett. 97, (2010) Art. ID 051104.

H.-Y. Ryu, M. Notomi, Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003).

K. Nozaki, T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, (2006) Art. ID 211101.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, J. VuCkovic, "Local tuning of photonic crystal cavities using chalcogenide glasses," Appl. Phys. Lett. 92, (2008) Art. ID 043123.

E.-A. Dorjgotov, A. K. Bhowmik, P. J. Bos, "High tunability mixed order photonic crystal," Appl. Phys. Lett. 96, (2010) Art. ID 163507.

IEEE J. Sel. Topics Quantum Electron. (1)

M. Makarova, Y. Gong, S.-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Negro, J. Vuckovic, "Photonic crystal and plasmonic silicon-based light sources," IEEE J. Sel. Topics Quantum Electron. 16, 132-140 (2010).

IEEE Photon. Technol. Lett. (2)

X. Chew, G. Zhou, F. S. Chau, J. Deng, "Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities," IEEE Photon. Technol. Lett. 23, 1310-1312 (2011).

D.-U. Kim, S. Kim, J. Lee, S.-R. Jeon, H. Jeon, "Free-standing GaN-based photonic crystal band-edge laser," IEEE Photon. Technol. Lett. 23, 1454-1456 (2011).

J. Appl. Phys. (1)

K. Dayal, K. Bhattacharya, "Active tuning of photonic device characteristics during operation by ferroelectric domain switching," J. Appl. Phys. 102, (2007) Art. ID 064102.

J. Lightw. Technol. (2)

M.-Y. Chen, H.-C. Chang, "Determination of surface plasmon modes and guided modes supported by periodic subwavelength slits on metals using a finite-difference frequency-domain method based eigenvalue algorithm," J. Lightw. Technol. 30, 76-83 (2012).

P. T. Lin, "Two-dimensional ferroelectric photonic crystal waveguides: Simulation, fabrication, and optical characterization," J. Lightw. Technol. 27, 4330-4337 (2009).

Nano Lett. (1)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, H. A. Atwater, "Electrooptic modulation in thin film barium titanate plasmonic interferometers," Nano Lett. 8, 4048-4052 (2008).

Nature (1)

Y. Akahane, T. Asano, B.-S. Song, "High-q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

Nature Photon. (1)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).

Opt. Exp. (1)

R. Shankar, R. Leijssen, I. Bulu, M. Lon\vcar, "Mid-infrared photonic crystal cavities in silicon," Opt. Exp. 19, 5579-5586 (2011).

Other (4)

C. Wang, Y. Tseng, J.-I. Chyi, W.-Y. Chen, T. Hsu, M. Shih, "Single mode operation 1.3 μm InAs quantum dot lasers based on small mode volume ql2 photonic crystal nano-cavity," Proc. IEEE 4th Int. Nanoelectron. Conf. (2011) pp. 1-2.

T. Buß, M. B. Christiansen, C. L. Smith, A. Kristensen, "Liquid crystal tunable photonic crystal dye laser," Proc. OSA Conf. Lasers and Electro-Opt. (2010) pp. CWM6.

A. V. Giannopoulos, C. Long, K. D. Choquette, "Photonic crystal heterostructure cavity lasers," Proc. Conf. Lasers and Electro-Optics/Quantum Electron. Laser Science Conf. Photonic Applic. Syst. Technologies (2008).

M. El Kurdi, X. Checoury, T.-P. Ngo, S. David, O. Boucaud, P. amd Kermarrec, Y. Campidelli, D. Bensahel, "High-quality factor photonic crystal nanocavities probed with SiGe/Si self-assembled islands," Proc. IEEE 4th Int. Conf. Group IV Photon. (2007) pp. 1-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.