Abstract

In this paper, primary technical challenges for emerging optical mobile backhaul (MBH) networks are discussed, with a focus on novel optical access and digital signal processing (DSP) architectures for future MBH. The first downstream/upstream Orthogonal Frequency Division Multiple Access and Time Division Multiple Access Passive Optical Network (OFDMA/TDMA-PON) achieving >100 Mb/s per-cell mobile backhaul and burst-mode operation using off-the-shelf avalanche photodiodes (APDs) is proposed and experimentally demonstrated for last-mile optical MBH with 200 cells per fiber. In the new approach, the use of OFDMA is motivated by the capability to establish low latency, virtual point-to-point links in the frequency-domain to serve high-density cell areas, while a judicious hybrid of DSP-enhanced digital radio-over-fiber (dRoF) and TDMA is proposed as an efficient way to meet <1 ms latency constraints subject to a 3 dB upstream burst-mode dynamic range tolerance. By thus enabling high speed, low latency, and low cost via simplified optics, the novel OFDMA/TDMA-PON is promising for future 4G and beyond optical backhaul networks.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription