Abstract

An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard implementation for a simple single mode soliton propagation example. As opposed to the standard implementation, the new implementation is able to reproduce pulsed four wave mixing observed experimentally in a higher order mode fiber.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Gruner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett., vol. 101, no. 16, p. 161106, 2012..
  2. R. H. Stolen, J. E. Bjorkholm, A. Ashkin, "Phase matched three wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).
  3. R. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).
  4. R. H. Stolen, W. N. Leibolt, "Optical fiber modes using stimulated four photon mixing," Appl. Opt. 15, 239-243 (1976).
  5. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, "Mode-division multiplexing over 96 km of few-mode fiber using coherent ${6}\times {6}$ mimo processing," J. Lightw. Technol. 30, 521 -531 (2012).
  6. J. Dudley, J. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).
  7. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Exp., vol. 15, no. 24, pp. 16 110–16 123, Nov. 2007..
  8. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Amer. B 6, 1159-1166 (1989).
  9. M. E. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Higher-order-mode fiber optimized for energetic soliton propagation," Opt. Lett. 37, 3459-3461 (2012).
  10. J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Time-domain multimode dispersion measurement in a higher-order-mode fiber," Opt. Lett. 37, 347-349 (2012).
  11. M. Kolesik, E. Wright, J. Moloney, "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers," Appl. Phys. B: Lasers Opt. 79, 293-300 (2004 ).
  12. F. Poletti, P. Horak, "Description of ultrashort pulse propagation in multimode optical fibers," J. Opt. Soc. Amer. B 25, 1645 -1654 (2008).
  13. F. Poletti, P. Horak, "Dynamics of femtosecond supercontinuum generation in multimode fibers," Opt. Exp. 17, 6134-6147 (2009).
  14. J. Hult, "A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," J. Lightw. Technol. 25, 3770-3775 (2007).
  15. A. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightw. Technol., vol. 27, no. 18, pp. 3984–3991, Sep. 15, 2009..

2012 (3)

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, "Mode-division multiplexing over 96 km of few-mode fiber using coherent ${6}\times {6}$ mimo processing," J. Lightw. Technol. 30, 521 -531 (2012).

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Time-domain multimode dispersion measurement in a higher-order-mode fiber," Opt. Lett. 37, 347-349 (2012).

M. E. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Higher-order-mode fiber optimized for energetic soliton propagation," Opt. Lett. 37, 3459-3461 (2012).

2009 (1)

F. Poletti, P. Horak, "Dynamics of femtosecond supercontinuum generation in multimode fibers," Opt. Exp. 17, 6134-6147 (2009).

2008 (1)

F. Poletti, P. Horak, "Description of ultrashort pulse propagation in multimode optical fibers," J. Opt. Soc. Amer. B 25, 1645 -1654 (2008).

2007 (1)

J. Hult, "A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," J. Lightw. Technol. 25, 3770-3775 (2007).

1989 (1)

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Amer. B 6, 1159-1166 (1989).

1976 (1)

1975 (1)

R. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).

1974 (1)

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, "Phase matched three wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).

Opt. Exp. (1)

F. Poletti, P. Horak, "Dynamics of femtosecond supercontinuum generation in multimode fibers," Opt. Exp. 17, 6134-6147 (2009).

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

M. Kolesik, E. Wright, J. Moloney, "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers," Appl. Phys. B: Lasers Opt. 79, 293-300 (2004 ).

Appl. Phys. Lett. (1)

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, "Phase matched three wave mixing in silica fiber optical waveguides," Appl. Phys. Lett. 24, 308-310 (1974).

IEEE J. Quantum Electron. (1)

R. Stolen, "Phase-matched-stimulated four-photon mixing in silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975).

J. Lightw. Technol. (1)

J. Hult, "A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," J. Lightw. Technol. 25, 3770-3775 (2007).

J. Lightw. Technol. (1)

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle, "Mode-division multiplexing over 96 km of few-mode fiber using coherent ${6}\times {6}$ mimo processing," J. Lightw. Technol. 30, 521 -531 (2012).

J. Opt. Soc. Amer. B (2)

F. Poletti, P. Horak, "Description of ultrashort pulse propagation in multimode optical fibers," J. Opt. Soc. Amer. B 25, 1645 -1654 (2008).

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Amer. B 6, 1159-1166 (1989).

Opt. Lett. (2)

J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Time-domain multimode dispersion measurement in a higher-order-mode fiber," Opt. Lett. 37, 347-349 (2012).

M. E. Pedersen, J. Cheng, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen, "Higher-order-mode fiber optimized for energetic soliton propagation," Opt. Lett. 37, 3459-3461 (2012).

Other (4)

A. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightw. Technol., vol. 27, no. 18, pp. 3984–3991, Sep. 15, 2009..

J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Gruner-Nielsen, and D. Jakobsen, “Intermodal four-wave mixing in a higher-order-mode fiber,” Appl. Phys. Lett., vol. 101, no. 16, p. 161106, 2012..

J. Dudley, J. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge Univ. Press, 2010).

J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Exp., vol. 15, no. 24, pp. 16 110–16 123, Nov. 2007..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.