Abstract

A detailed theoretical analysis of the lasing wavelength precision of the DFB laser array based on a reconstruction-equivalent-chirp (REC) technique is presented. Experimental results of the eight-wavelength DFB laser array with equivalent π phase shift (π-EPS) and four-wavelength DFB laser array with equivalent three shifts are also given. High lasing wavelength precision was obtained. This paper demonstrates that the REC technique is a promising way for fabricating the multiwavelength DFB laser array with low cost and high yield.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T.-P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, A. Lepore, "Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed," J. Lightw. Technol. 14, 967-976 (1996 ).
  2. D.-S. Hélène, K. Christophe, "Challenges and advances of photonics integrated circuits," C.R.Physique 9, 1055-1066 (2008).
  3. S.-W. Ryu, S.-B. Kim, J.-S. Sim, J. Kim, "Monolithic integration of a mulitiwavelength laser array associated with asymmetric sampled grating lasers," IEEE J. Sel. Topics Quantum Electron. 8 , 1358-1365 (2002).
  4. H. Hillmer, B. Klepser, "Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides," IEEE J. Quantum Electron. 40, 1377-1383 (2004 ).
  5. L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, R. Bhat, "Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range," IEEE Photon. Technol. Lett. 4, 318-320 (1992).
  6. K. Tsuzuki, Y. Shibata, N. Kikuchi, M. Ishikawa, T. Yasui, H. Ishii, H. Yasaka, "Full C-band tunable DFB laser array copackaged with InP Mach-Zehnder modulator for DWDM optical communication systems," IEEE J. Sel. Topics Quantum Electron. 15, 521-527 (2009).
  7. H. Ishii, K. Kasaya, H. Oohashi, "Spectral linewidth reduction in widely wavelength tunable DFB laser array," IEEE J. Sel. Topics Quantum Electron. 15, 514-520 (2009).
  8. G. P. Li, T. Makino, A. Sarangan, W. Huang, "16-wavelength gain-coupled DFB laser array with fine tunability," IEEE Photon. Technol. Lett. 8, 22 -24 (1996).
  9. S.-L. Lee, I.-F. Jang, C.-Y. Wang, C.-T. Pien, T.-T. Shih, " Monolithically integrated multiwavelength sampled grating DBR lasers for dense WDM applications," IEEE J. Sel. Topics Quantum Electron. 6, 197-206 (2000).
  10. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, H. Zhu, "Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology," Opt. Exp. 17, 5240-5245 (2009).
  11. J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, H. Zhu, "Monolithically integrated 30-wavelength DFB laser array," Proc. SPIE 7631, 763104-1-763104-6 (2009).
  12. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, Y. Feng, "Experimental demonstration of the three phase shifted DFB semiconductor laser based on reconstruction-equivalent-chirp technique," Opt. Exp. 20, 17374-17379 (2012).
  13. X. Chen, “Distributed feedback semiconductor laser based on reconstruction-equivalent-chirp technology and the manufacture method of the same,” U.S. Patent 7 873 089 B2, Jan. 18, 2011..
  14. X. Chen, W. Liu, J. An, K. Xu, X. Wang, J. Liu, Y. Ji, N. Zhu, "Photonic integrated technology for multi-wavelength laser emission," Chin. Sci. Bull. 56, 3064-3071 (2011).
  15. Y. Dai, X. Chen, L. Xia, Y. Zhang, S. Xie, "Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp ," Opt. Lett. 29, 1333-1335 (2004).
  16. Y. Huang, K. Sato, T. Okuda, N. Suzhuki, S. Ae, Y. Muroya, K. Mori, T. Sasaki, K. Kobayashi, "Low-chirp and external optical feedback resistant characteristics in λ/8 phase-shifted distributed-feedback laser diodes under direct modulation," IEEE J. Quantum Electron. 38, 1479-1484 (2002).
  17. Y. Dai, J. Yao, " Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology," IEEE J. Quantum Electron. 44, 938-945 (2008 ).
  18. S. Li, Y. Shi, R. Gu, X. Chen, "Experimental demonstration of the corrugation pitch modulated DFB semiconductor laser based on the reconstruction-equivalent-chirp technology," Proc. SPIE 7987, 112-113 (2010).
  19. Y. Zhou, W. Li, R. Liu, L. Lu, Y. Shi, X. Chen, "The influence of sampling duty cycle fabrication error in an SBG semiconductor laser on its lasing wavelength," Proc. SPIE 8552, 85520O-1-85520O-6 (2012).

2012 (2)

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, Y. Feng, "Experimental demonstration of the three phase shifted DFB semiconductor laser based on reconstruction-equivalent-chirp technique," Opt. Exp. 20, 17374-17379 (2012).

Y. Zhou, W. Li, R. Liu, L. Lu, Y. Shi, X. Chen, "The influence of sampling duty cycle fabrication error in an SBG semiconductor laser on its lasing wavelength," Proc. SPIE 8552, 85520O-1-85520O-6 (2012).

2011 (1)

X. Chen, W. Liu, J. An, K. Xu, X. Wang, J. Liu, Y. Ji, N. Zhu, "Photonic integrated technology for multi-wavelength laser emission," Chin. Sci. Bull. 56, 3064-3071 (2011).

2010 (1)

S. Li, Y. Shi, R. Gu, X. Chen, "Experimental demonstration of the corrugation pitch modulated DFB semiconductor laser based on the reconstruction-equivalent-chirp technology," Proc. SPIE 7987, 112-113 (2010).

2009 (4)

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, H. Zhu, "Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology," Opt. Exp. 17, 5240-5245 (2009).

J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, H. Zhu, "Monolithically integrated 30-wavelength DFB laser array," Proc. SPIE 7631, 763104-1-763104-6 (2009).

K. Tsuzuki, Y. Shibata, N. Kikuchi, M. Ishikawa, T. Yasui, H. Ishii, H. Yasaka, "Full C-band tunable DFB laser array copackaged with InP Mach-Zehnder modulator for DWDM optical communication systems," IEEE J. Sel. Topics Quantum Electron. 15, 521-527 (2009).

H. Ishii, K. Kasaya, H. Oohashi, "Spectral linewidth reduction in widely wavelength tunable DFB laser array," IEEE J. Sel. Topics Quantum Electron. 15, 514-520 (2009).

2008 (1)

D.-S. Hélène, K. Christophe, "Challenges and advances of photonics integrated circuits," C.R.Physique 9, 1055-1066 (2008).

2008 (1)

Y. Dai, J. Yao, " Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology," IEEE J. Quantum Electron. 44, 938-945 (2008 ).

2004 (1)

2004 (1)

H. Hillmer, B. Klepser, "Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides," IEEE J. Quantum Electron. 40, 1377-1383 (2004 ).

2002 (2)

S.-W. Ryu, S.-B. Kim, J.-S. Sim, J. Kim, "Monolithic integration of a mulitiwavelength laser array associated with asymmetric sampled grating lasers," IEEE J. Sel. Topics Quantum Electron. 8 , 1358-1365 (2002).

Y. Huang, K. Sato, T. Okuda, N. Suzhuki, S. Ae, Y. Muroya, K. Mori, T. Sasaki, K. Kobayashi, "Low-chirp and external optical feedback resistant characteristics in λ/8 phase-shifted distributed-feedback laser diodes under direct modulation," IEEE J. Quantum Electron. 38, 1479-1484 (2002).

2000 (1)

S.-L. Lee, I.-F. Jang, C.-Y. Wang, C.-T. Pien, T.-T. Shih, " Monolithically integrated multiwavelength sampled grating DBR lasers for dense WDM applications," IEEE J. Sel. Topics Quantum Electron. 6, 197-206 (2000).

1996 (1)

T.-P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, A. Lepore, "Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed," J. Lightw. Technol. 14, 967-976 (1996 ).

1996 (1)

G. P. Li, T. Makino, A. Sarangan, W. Huang, "16-wavelength gain-coupled DFB laser array with fine tunability," IEEE Photon. Technol. Lett. 8, 22 -24 (1996).

1992 (1)

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, R. Bhat, "Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range," IEEE Photon. Technol. Lett. 4, 318-320 (1992).

IEEE J. Quantum Electron. (1)

Y. Huang, K. Sato, T. Okuda, N. Suzhuki, S. Ae, Y. Muroya, K. Mori, T. Sasaki, K. Kobayashi, "Low-chirp and external optical feedback resistant characteristics in λ/8 phase-shifted distributed-feedback laser diodes under direct modulation," IEEE J. Quantum Electron. 38, 1479-1484 (2002).

C.R.Physique (1)

D.-S. Hélène, K. Christophe, "Challenges and advances of photonics integrated circuits," C.R.Physique 9, 1055-1066 (2008).

Chin. Sci. Bull. (1)

X. Chen, W. Liu, J. An, K. Xu, X. Wang, J. Liu, Y. Ji, N. Zhu, "Photonic integrated technology for multi-wavelength laser emission," Chin. Sci. Bull. 56, 3064-3071 (2011).

IEEE J. Quantum Electron. (2)

Y. Dai, J. Yao, " Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology," IEEE J. Quantum Electron. 44, 938-945 (2008 ).

H. Hillmer, B. Klepser, "Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and tilted waveguides," IEEE J. Quantum Electron. 40, 1377-1383 (2004 ).

IEEE J. Sel. Topics Quantum Electron. (4)

S.-W. Ryu, S.-B. Kim, J.-S. Sim, J. Kim, "Monolithic integration of a mulitiwavelength laser array associated with asymmetric sampled grating lasers," IEEE J. Sel. Topics Quantum Electron. 8 , 1358-1365 (2002).

K. Tsuzuki, Y. Shibata, N. Kikuchi, M. Ishikawa, T. Yasui, H. Ishii, H. Yasaka, "Full C-band tunable DFB laser array copackaged with InP Mach-Zehnder modulator for DWDM optical communication systems," IEEE J. Sel. Topics Quantum Electron. 15, 521-527 (2009).

H. Ishii, K. Kasaya, H. Oohashi, "Spectral linewidth reduction in widely wavelength tunable DFB laser array," IEEE J. Sel. Topics Quantum Electron. 15, 514-520 (2009).

S.-L. Lee, I.-F. Jang, C.-Y. Wang, C.-T. Pien, T.-T. Shih, " Monolithically integrated multiwavelength sampled grating DBR lasers for dense WDM applications," IEEE J. Sel. Topics Quantum Electron. 6, 197-206 (2000).

IEEE Photon. Technol. Lett. (2)

G. P. Li, T. Makino, A. Sarangan, W. Huang, "16-wavelength gain-coupled DFB laser array with fine tunability," IEEE Photon. Technol. Lett. 8, 22 -24 (1996).

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, R. Bhat, "Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range," IEEE Photon. Technol. Lett. 4, 318-320 (1992).

J. Lightw. Technol. (1)

T.-P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. Caneau, A. W. Rahjel, M. Koza, J. K. Gamelin, L. Curtis, D. D. Mahoney, A. Lepore, "Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed," J. Lightw. Technol. 14, 967-976 (1996 ).

Opt. Exp. (1)

J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, H. Zhu, "Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology," Opt. Exp. 17, 5240-5245 (2009).

Opt. Exp. (1)

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, Y. Feng, "Experimental demonstration of the three phase shifted DFB semiconductor laser based on reconstruction-equivalent-chirp technique," Opt. Exp. 20, 17374-17379 (2012).

Opt. Lett. (1)

Proc. SPIE (3)

S. Li, Y. Shi, R. Gu, X. Chen, "Experimental demonstration of the corrugation pitch modulated DFB semiconductor laser based on the reconstruction-equivalent-chirp technology," Proc. SPIE 7987, 112-113 (2010).

Y. Zhou, W. Li, R. Liu, L. Lu, Y. Shi, X. Chen, "The influence of sampling duty cycle fabrication error in an SBG semiconductor laser on its lasing wavelength," Proc. SPIE 8552, 85520O-1-85520O-6 (2012).

J. Li, X. Chen, N. Zhou, Z. Jing, X. Huang, L. Li, H. Wang, Y. Lu, H. Zhu, "Monolithically integrated 30-wavelength DFB laser array," Proc. SPIE 7631, 763104-1-763104-6 (2009).

Other (1)

X. Chen, “Distributed feedback semiconductor laser based on reconstruction-equivalent-chirp technology and the manufacture method of the same,” U.S. Patent 7 873 089 B2, Jan. 18, 2011..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.