Abstract

This paper presents a complete analytical framework for modeling memoryless nonlinear effects in an intensity modulation and direct detection optical wireless communication system based on orthogonal frequency division multiplexing. The theory employs the Bussgang theorem, which is widely accepted as a means to characterize the impact of nonlinear distortions on normally distributed signals. This paper proposes a new method to generalize this approach, and it describes how a closed-form analytical expression for the system bit error rate can be obtained for an arbitrary memoryless distortion. Major distortion effects at the transmitter stage such as quantization and nonlinearity from the light emitting diode are analyzed. Four known orthogonal-frequency-division-multiplexing-based modulation schemes for optical communication are considered in this paper: direct-current-biased optical OFDM, asymmetrically clipped optical OFDM, pulse-amplitude-modulated discrete multitone modulation, and unipolar orthogonal frequency division multiplexing.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription