Abstract

Growth in demand for bandwidth within avionic systems has renewed interest in wavelength division multiplexing (WDM) topologies. Within an Avionics context, systems are specified for operation from –55 °C to 125 °C. This increased operational temperature range exceeds the capability of commercial off the shelf components. Here, we have investigated the design and operation of a dense WDM network over an extended temperature range. The implementation uses spectrum sliced seed sources in combination with reflective semiconductor optical amplifier (RSOA) end nodes. We report on the performance of a single polarization ridge waveguide RSOA with an Al containing quaternary active region. Two different designs of RSOA have been evaluated: a standard bulk heterostructure device and the single polarization ridge waveguide device design for high temperature operation. It has been shown that a SS-WDM network can be implemented using the RWG-RSOA and maintain a BER of 10 $^{-9}$ at 75 °C allowing for 6 dB excess loss to account for component and connector aging. This offers an extension of at least 20 °C when compared to the standard bulk active RSOA. In addition, a novel passive cooling method, devised to compensate for short term excursions outside the maximum thermal operating envelope, has been investigated. This technique uses a phase change material as a passive, cooling mechanism. The performance of this method is contrasted against a thermoelectric cooler considering the influence of power consumption on fuel requirements for a Boeing 737–800.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. F. Habiby, M. J. Hackert, "RONIA results: WDM-based optical networks in aircraft applications," Proc. Avionics, Fiber Opt. Photon. Conf. (2008) pp. 71-72.
  2. T. Berglund, “Evaluation of fuel saving for an airline,” Bachelor thesis, Dept. Math. Phys., Mälardalen Univ., Eskilstuna, Sweden, 2008..
  3. N. Chand, B. Eteson, " Optical LAN for avionics platforms," Proc. Avionics, Fiber Opt. Photon. Conf. (2009 ) pp. 42-43.
  4. R. D. Gardner, "PHONAV—A Photonic WDM network architecture for next generation avionics systems," Proc. Aerosp. Conf. (1999) pp. 451 -466.
  5. J.-X. Cai, D. G. Foursa, C. R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W. W. Patterson, A. N. Pilipetskii, M. Nissov, N. S. Bergano, "A DWDM demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK channels at 10 Gb/s," presented at the Opt Fiber Commun. Conf. AtlantaGAUSA (2003) Paper PD22-P1-3.
  6. W. M. Hendrix, "Thermal design of a DWDM optical network system," Proc. Int. Mech. Eng. Congr. Expo. (2005) pp. 349-370.
  7. F. Payoux, P. Chanclou, R. Brenot, "WDM PON with a single SLED seeding colorless RSOA-based OLT and ONUs," Proc. Eur. Conf. Opt. Commun. pp. 1-2 .
  8. S. H. Shin, O. K. Jung, D. J. Shin, S. B. Park, J. S. Lee, L. K. Yun, S. W. Kim, Y. H. Oh, C. S. Shim, "16 × 1.25 Gbit/s WDM-PON based on ASE-injected R-SOAs in 60 °C temperature range," Proc. μOpt. Fiber Commun. Conf. (2006) pp. 3-5.
  9. (2012, May 31). [Online]. Available: http://www.kamelian.com/products.html.
  10. D. D. Sampson, W. T. Holloway, "100 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron Lett. 30, 1611-1612 (1994).
  11. C. Michie, A. E. Kelly, J. McGeough, S. Karagiannopoulos, I. Andonovic, "Optically amplified passive optical networks: a power budget analysis," J. Opt. Netw. 8, 370-382 (2009).
  12. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, D. J. Richardson, "Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems ," J. Lightw. Technol. 23, 2399-2409 (2005).
  13. C. Michie, A. E. Kelly, J. McGeough, I. Armstrong, I. Andonovic, C. Tombling, "Polarization-insensitive SOAs using strained bulk active regions," J. Lightw. Technol. 24, 3920-3927 (2006).
  14. T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, S. Ishikawa, "1.3-μm AlGaInAs strain compensated MQW-buried-heterostructure lasers for uncooled 10-Gb/s operation," IEEE J. Sel. Topics Quantum Electron. 11, 141-148 (2005).
  15. E. M. Alawadhi, "Thermal analysis of a building brick containing phase change material," Energy Build. 40, 351-357 (2008).
  16. (2012, May 31). Air BP Product Handbook. [Online]. Available: http://www.bp.com/sectiongenericarticle.do?categoryId=4503759&contentId=57765.
  17. A. Gomez, J. J. Berry, S. Roychoudhury, B. Coriton, J. Huth, " From jet fuel to electric power using a mesoscale, efficient Stirling cycle," Proc. Combustion Inst. 31, 3251-3259 (2007).

2009 (1)

C. Michie, A. E. Kelly, J. McGeough, S. Karagiannopoulos, I. Andonovic, "Optically amplified passive optical networks: a power budget analysis," J. Opt. Netw. 8, 370-382 (2009).

2008 (1)

E. M. Alawadhi, "Thermal analysis of a building brick containing phase change material," Energy Build. 40, 351-357 (2008).

2007 (1)

A. Gomez, J. J. Berry, S. Roychoudhury, B. Coriton, J. Huth, " From jet fuel to electric power using a mesoscale, efficient Stirling cycle," Proc. Combustion Inst. 31, 3251-3259 (2007).

2006 (1)

C. Michie, A. E. Kelly, J. McGeough, I. Armstrong, I. Andonovic, C. Tombling, "Polarization-insensitive SOAs using strained bulk active regions," J. Lightw. Technol. 24, 3920-3927 (2006).

2005 (2)

T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, S. Ishikawa, "1.3-μm AlGaInAs strain compensated MQW-buried-heterostructure lasers for uncooled 10-Gb/s operation," IEEE J. Sel. Topics Quantum Electron. 11, 141-148 (2005).

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, D. J. Richardson, "Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems ," J. Lightw. Technol. 23, 2399-2409 (2005).

1994 (1)

D. D. Sampson, W. T. Holloway, "100 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron Lett. 30, 1611-1612 (1994).

J. Opt. Netw. (1)

C. Michie, A. E. Kelly, J. McGeough, S. Karagiannopoulos, I. Andonovic, "Optically amplified passive optical networks: a power budget analysis," J. Opt. Netw. 8, 370-382 (2009).

Electron Lett. (1)

D. D. Sampson, W. T. Holloway, "100 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron Lett. 30, 1611-1612 (1994).

Energy Build. (1)

E. M. Alawadhi, "Thermal analysis of a building brick containing phase change material," Energy Build. 40, 351-357 (2008).

IEEE J. Sel. Topics Quantum Electron. (1)

T. Nakamura, T. Okuda, R. Kobayashi, Y. Muroya, K. Tsuruoka, Y. Ohsawa, T. Tsukuda, S. Ishikawa, "1.3-μm AlGaInAs strain compensated MQW-buried-heterostructure lasers for uncooled 10-Gb/s operation," IEEE J. Sel. Topics Quantum Electron. 11, 141-148 (2005).

J. Lightw. Technol. (2)

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, D. J. Richardson, "Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems ," J. Lightw. Technol. 23, 2399-2409 (2005).

C. Michie, A. E. Kelly, J. McGeough, I. Armstrong, I. Andonovic, C. Tombling, "Polarization-insensitive SOAs using strained bulk active regions," J. Lightw. Technol. 24, 3920-3927 (2006).

Proc. Combustion Inst. (1)

A. Gomez, J. J. Berry, S. Roychoudhury, B. Coriton, J. Huth, " From jet fuel to electric power using a mesoscale, efficient Stirling cycle," Proc. Combustion Inst. 31, 3251-3259 (2007).

Other (10)

(2012, May 31). Air BP Product Handbook. [Online]. Available: http://www.bp.com/sectiongenericarticle.do?categoryId=4503759&contentId=57765.

S. F. Habiby, M. J. Hackert, "RONIA results: WDM-based optical networks in aircraft applications," Proc. Avionics, Fiber Opt. Photon. Conf. (2008) pp. 71-72.

T. Berglund, “Evaluation of fuel saving for an airline,” Bachelor thesis, Dept. Math. Phys., Mälardalen Univ., Eskilstuna, Sweden, 2008..

N. Chand, B. Eteson, " Optical LAN for avionics platforms," Proc. Avionics, Fiber Opt. Photon. Conf. (2009 ) pp. 42-43.

R. D. Gardner, "PHONAV—A Photonic WDM network architecture for next generation avionics systems," Proc. Aerosp. Conf. (1999) pp. 451 -466.

J.-X. Cai, D. G. Foursa, C. R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W. W. Patterson, A. N. Pilipetskii, M. Nissov, N. S. Bergano, "A DWDM demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK channels at 10 Gb/s," presented at the Opt Fiber Commun. Conf. AtlantaGAUSA (2003) Paper PD22-P1-3.

W. M. Hendrix, "Thermal design of a DWDM optical network system," Proc. Int. Mech. Eng. Congr. Expo. (2005) pp. 349-370.

F. Payoux, P. Chanclou, R. Brenot, "WDM PON with a single SLED seeding colorless RSOA-based OLT and ONUs," Proc. Eur. Conf. Opt. Commun. pp. 1-2 .

S. H. Shin, O. K. Jung, D. J. Shin, S. B. Park, J. S. Lee, L. K. Yun, S. W. Kim, Y. H. Oh, C. S. Shim, "16 × 1.25 Gbit/s WDM-PON based on ASE-injected R-SOAs in 60 °C temperature range," Proc. μOpt. Fiber Commun. Conf. (2006) pp. 3-5.

(2012, May 31). [Online]. Available: http://www.kamelian.com/products.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.