Abstract

Plasmonic waveguides based on surface plasmon polartions (SPPs) are highly complementary metal–oxide–semiconductor (CMOS)-compatible that they have been considered as a prospective basic element to implement future on-chip subwavelength electronic–photonic integrated circuits (EPICs). We propose the monolithic integration of CMOS-compatible plasmonic waveguides within CMOS architecture for the development of CMOS EPICs. Based on a preformed CMOS optoelectronic platform, several different types of plasmonic EPIC schematics are proposed. The vertical directional coupling characteristics of the proposed plasmonic EPICs are thoroughly investigated in detail at a telecom wavelength of 1.55 μm. By changing the geometrical parameters of the plasmonic waveguides, we identified the coupler configuration that provides optimal optical performance. We discussed the design and fabrication issues for further development of the proposed plasmonic CMOS EPICs and related microsystems. We concluded that the proposed monolithic integration platform would make first step forward to exploiting for plasmonic-based 3-D on-chip EPICs.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription