Abstract

Plasmonic waveguides based on surface plasmon polartions (SPPs) are highly complementary metal–oxide–semiconductor (CMOS)-compatible that they have been considered as a prospective basic element to implement future on-chip subwavelength electronic–photonic integrated circuits (EPICs). We propose the monolithic integration of CMOS-compatible plasmonic waveguides within CMOS architecture for the development of CMOS EPICs. Based on a preformed CMOS optoelectronic platform, several different types of plasmonic EPIC schematics are proposed. The vertical directional coupling characteristics of the proposed plasmonic EPICs are thoroughly investigated in detail at a telecom wavelength of 1.55 μm. By changing the geometrical parameters of the plasmonic waveguides, we identified the coupler configuration that provides optimal optical performance. We discussed the design and fabrication issues for further development of the proposed plasmonic CMOS EPICs and related microsystems. We concluded that the proposed monolithic integration platform would make first step forward to exploiting for plasmonic-based 3-D on-chip EPICs.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. W. Goodman, "Optical interconnections for VLSI systems," Proc. IEEE 72, 850-866 (1984).
  2. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728 -749 (2000).
  3. G. T. Reed, A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
  4. B. Jalali, S. Fathpour, "Silicon photonics," J. Lightw. Technol. 24 , 4600-4615 (2006).
  5. A. V. Krishnamoorthy, "Computer systems based on silicon photonic interconnects ," Proc. IEEE 97, 1337-1361 (2009).
  6. J. S. Orcutt, "Open foundry platform for high-performance electronic–photonic integration," Opt. Exp. 20, 12222-12232 (2012).
  7. K. F. MacDonald, N. I. Zheludev, "Active plasmonics: Current status," Laser Photon. Rev. 4, 562-567 (2010).
  8. Electromagnetic Surface Modes (Wiley, 1982).
  9. D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon. 4, 83-91 (2010).
  10. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions ," Science 3, 189-193 (2006).
  11. J. C. Weeber, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
  12. S. A. Maier, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
  13. S. I. Bozhevolnyi, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
  14. A. V. Krasavina, A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides ," Appl. Phys. Lett. 90, 211101 (2007).
  15. R. Zia, "Geometries and materials for subwavelength surface plasmon modes ," J. Opt. Soc. Amer. A 21, 2442 -2446 (2004).
  16. J. A. Dionne, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
  17. L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645 -6650 (2005).
  18. R. F. Oulton, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
  19. M. Fujii, J. Leuthold, W. Freude, "Dispersion relation and loss of subwavelength confined mode of metal dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).
  20. D. Dai, S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).
  21. M. Wu, Z. Han, V. Van, "Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale," Opt. Exp. 18 , 11728-11736 ( 2010).
  22. A. V. Krasavin, A. V. Zayats, "Silicon-based plasmonic waveguide," Opt. Exp. 18 , 11791-11799 ( 2010).
  23. J. T. Kim, "Hybrid plasmonic waveguide for low-loss lightwave guiding ," Opt. Exp. 18, 2808-2813 (2010).
  24. J. T. Kim, "CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration," IEEE Photon. Technol. Lett. 23, 206-208 (2011).
  25. J. T. Kim, "CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits," IEEE Photon. Technol. Lett. 23, 1481-1483 (2011 ).
  26. J. T. Kim, S.–E. Choi, "Hybrid plasmonic slot waveguides with sidewall slope," IEEE Photon. Technol. Lett. 24, 170-172 (2012).
  27. J. A. Dionne, "PlasMOStor: A metal-oxide-Si field effect plasmonic modulator ," Nano Lett. 9, 897-902 (2009).
  28. S. Zhu, "Fully complementary metal–oxide–semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits," Appl. Phys. Lett. 98, 021107 (2011 ).
  29. S. Zhu, G. Q. Lo, D. L. Kwong, "Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides," Appl. Phys. Lett. 99, 151114 (2011).
  30. S. Zhu, G. Q. Lo, D. L. Kwong, "Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon- insulator-metal nanoplasmonic slot waveguide," Opt. Exp. 19, 15843-15854 (2011).
  31. S. Zhu, G. Q. Lo, D. L. Kwong, "Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO $_{2}$ -Si-SiO $_{2}$ -Cu nanoplasmonic waveguides," Opt. Exp. 20, 5867-5881 (2012).
  32. S. Papaioannou, "A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects," J. Lightw. Technol. 29, 3185-3195 (2011).
  33. S. Papaioannou, "Active plasmonics in WDM traffic switching applications ," Sci. Rep. 2, 652 (2012).
  34. R. M. Briggs, "Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides," Nano Lett. 10, 4851-4857 (2010).
  35. C. Delacour, "Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal–oxide–silicon nanophotonics," Nano Lett. 10, 2922-2926 ( 2010).
  36. Q. Li, M. Qiu, " Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide," Opt. Exp. 18, 15531-15543 (2010).
  37. S.-E. Choi, J. T. Kim, " Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide," Opt. Comm. 285, 3735-3739 (2012).
  38. R. J. Walter, "A silicon-based electrical source of surface plasmon polaritons ," Nat. Mat. 9, 21- 25 (2010).
  39. A. Akbari, R. N. Tait, P. Berini, "Surface plasmon waveguide Schottky detector," Opt. Exp. 18, 8505-8514 (2010).
  40. R. G. Beausoleil, "Nanoelectronic and nanophotonic interconnect ," Proc. IEEE 96, 230-247 (2008).
  41. A. D. Rakic, "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum," Appl. Opt. 34, 4755-4767 (1995).
  42. G. Lubberts, "Optical properties of phosphorus-doped polycrystalline silicon layers ," J. Appl. Phys. 52, 6870-6878 (1981).
  43. Z. Han, A. Y. Elezzabi, V. Van, "Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform," Opt. Lett. 35 , 502-504 (2010).
  44. R. Yang, "Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide," Opt. Lett. 35, 649-651 (2010).
  45. N.-N. Feng, L. D. Negro, "Plasmon mode transformation in modulated-index metal-dielectric slot waveguides," Opt. Lett. 32, 3086-3088 (2007).
  46. S. Zhu, "Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration," Opt. Exp. 19, 8888-8902 (2011).
  47. A. Emboras, "MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices," Opt. Exp. 20, 13612-13621 (2012).
  48. P. Berini, I. De Leon, "Surface plasmon–polariton amplifiers and lasers," Nat. Photon. 6, 16-24 (2012 ).
  49. A. Boltasseva, H. A. Atwater, "Low-loss plasmonic metamaterials," Science 331 , 290-291 (2011).
  50. F. Bonaccorso, "Graphene photonics and optoelectronics," Nat. Photon. 4, 611-622 (2010).
  51. J. T. Kim, S. -Y. Choi, "Graphene-based plasmonic waveguides for photonic integrated circuits," Opt. Exp. 19, 24557-24562 (2011).
  52. K. Kim, "A role for graphene in silicon-based semiconductor devices ," Nature 479, 338- 344 (2011).
  53. J. S. Orcutt, R. J. Ram, " Photonic device layout within the foundry CMOS design environment," IEEE Photon. Technol. Lett. 22, 544-546 (2010).

2012 (6)

J. S. Orcutt, "Open foundry platform for high-performance electronic–photonic integration," Opt. Exp. 20, 12222-12232 (2012).

J. T. Kim, S.–E. Choi, "Hybrid plasmonic slot waveguides with sidewall slope," IEEE Photon. Technol. Lett. 24, 170-172 (2012).

S. Zhu, G. Q. Lo, D. L. Kwong, "Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO $_{2}$ -Si-SiO $_{2}$ -Cu nanoplasmonic waveguides," Opt. Exp. 20, 5867-5881 (2012).

S.-E. Choi, J. T. Kim, " Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide," Opt. Comm. 285, 3735-3739 (2012).

S. Papaioannou, "Active plasmonics in WDM traffic switching applications ," Sci. Rep. 2, 652 (2012).

A. Emboras, "MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices," Opt. Exp. 20, 13612-13621 (2012).

2011 (8)

A. Boltasseva, H. A. Atwater, "Low-loss plasmonic metamaterials," Science 331 , 290-291 (2011).

J. T. Kim, "CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration," IEEE Photon. Technol. Lett. 23, 206-208 (2011).

S. Zhu, "Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration," Opt. Exp. 19, 8888-8902 (2011).

J. T. Kim, S. -Y. Choi, "Graphene-based plasmonic waveguides for photonic integrated circuits," Opt. Exp. 19, 24557-24562 (2011).

K. Kim, "A role for graphene in silicon-based semiconductor devices ," Nature 479, 338- 344 (2011).

S. Papaioannou, "A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects," J. Lightw. Technol. 29, 3185-3195 (2011).

S. Zhu, G. Q. Lo, D. L. Kwong, "Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides," Appl. Phys. Lett. 99, 151114 (2011).

S. Zhu, G. Q. Lo, D. L. Kwong, "Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon- insulator-metal nanoplasmonic slot waveguide," Opt. Exp. 19, 15843-15854 (2011).

2010 (11)

J. T. Kim, "Hybrid plasmonic waveguide for low-loss lightwave guiding ," Opt. Exp. 18, 2808-2813 (2010).

R. M. Briggs, "Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides," Nano Lett. 10, 4851-4857 (2010).

Q. Li, M. Qiu, " Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide," Opt. Exp. 18, 15531-15543 (2010).

Z. Han, A. Y. Elezzabi, V. Van, "Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform," Opt. Lett. 35 , 502-504 (2010).

R. Yang, "Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide," Opt. Lett. 35, 649-651 (2010).

R. J. Walter, "A silicon-based electrical source of surface plasmon polaritons ," Nat. Mat. 9, 21- 25 (2010).

A. Akbari, R. N. Tait, P. Berini, "Surface plasmon waveguide Schottky detector," Opt. Exp. 18, 8505-8514 (2010).

K. F. MacDonald, N. I. Zheludev, "Active plasmonics: Current status," Laser Photon. Rev. 4, 562-567 (2010).

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon. 4, 83-91 (2010).

J. S. Orcutt, R. J. Ram, " Photonic device layout within the foundry CMOS design environment," IEEE Photon. Technol. Lett. 22, 544-546 (2010).

F. Bonaccorso, "Graphene photonics and optoelectronics," Nat. Photon. 4, 611-622 (2010).

2009 (4)

A. V. Krishnamoorthy, "Computer systems based on silicon photonic interconnects ," Proc. IEEE 97, 1337-1361 (2009).

M. Fujii, J. Leuthold, W. Freude, "Dispersion relation and loss of subwavelength confined mode of metal dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).

D. Dai, S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).

J. A. Dionne, "PlasMOStor: A metal-oxide-Si field effect plasmonic modulator ," Nano Lett. 9, 897-902 (2009).

2008 (2)

R. F. Oulton, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).

R. G. Beausoleil, "Nanoelectronic and nanophotonic interconnect ," Proc. IEEE 96, 230-247 (2008).

2007 (2)

N.-N. Feng, L. D. Negro, "Plasmon mode transformation in modulated-index metal-dielectric slot waveguides," Opt. Lett. 32, 3086-3088 (2007).

A. V. Krasavina, A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides ," Appl. Phys. Lett. 90, 211101 (2007).

2006 (4)

S. I. Bozhevolnyi, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).

J. A. Dionne, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).

B. Jalali, S. Fathpour, "Silicon photonics," J. Lightw. Technol. 24 , 4600-4615 (2006).

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions ," Science 3, 189-193 (2006).

2005 (1)

L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645 -6650 (2005).

2004 (1)

R. Zia, "Geometries and materials for subwavelength surface plasmon modes ," J. Opt. Soc. Amer. A 21, 2442 -2446 (2004).

2003 (1)

S. A. Maier, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).

2000 (1)

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728 -749 (2000).

1999 (1)

J. C. Weeber, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).

1995 (1)

1984 (1)

J. W. Goodman, "Optical interconnections for VLSI systems," Proc. IEEE 72, 850-866 (1984).

1981 (1)

G. Lubberts, "Optical properties of phosphorus-doped polycrystalline silicon layers ," J. Appl. Phys. 52, 6870-6878 (1981).

Appl. Phys. Lett. (1)

S. Zhu, "Fully complementary metal–oxide–semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits," Appl. Phys. Lett. 98, 021107 (2011 ).

Nat. Photon. (1)

F. Bonaccorso, "Graphene photonics and optoelectronics," Nat. Photon. 4, 611-622 (2010).

Opt. Exp. (2)

J. T. Kim, S. -Y. Choi, "Graphene-based plasmonic waveguides for photonic integrated circuits," Opt. Exp. 19, 24557-24562 (2011).

S. Zhu, G. Q. Lo, D. L. Kwong, "Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO $_{2}$ -Si-SiO $_{2}$ -Cu nanoplasmonic waveguides," Opt. Exp. 20, 5867-5881 (2012).

Appl. Phys. Lett. (1)

S. Zhu, G. Q. Lo, D. L. Kwong, "Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides," Appl. Phys. Lett. 99, 151114 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. V. Krasavina, A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides ," Appl. Phys. Lett. 90, 211101 (2007).

IEEE Photon. Technol. Lett. (2)

M. Fujii, J. Leuthold, W. Freude, "Dispersion relation and loss of subwavelength confined mode of metal dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).

J. T. Kim, S.–E. Choi, "Hybrid plasmonic slot waveguides with sidewall slope," IEEE Photon. Technol. Lett. 24, 170-172 (2012).

IEEE Photon. Technol. Lett. (1)

J. S. Orcutt, R. J. Ram, " Photonic device layout within the foundry CMOS design environment," IEEE Photon. Technol. Lett. 22, 544-546 (2010).

IEEE Photon. Technol. Lett. (2)

J. T. Kim, "CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration," IEEE Photon. Technol. Lett. 23, 206-208 (2011).

J. T. Kim, "CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits," IEEE Photon. Technol. Lett. 23, 1481-1483 (2011 ).

J. Appl. Phys. (1)

G. Lubberts, "Optical properties of phosphorus-doped polycrystalline silicon layers ," J. Appl. Phys. 52, 6870-6878 (1981).

J. Lightw. Technol. (1)

S. Papaioannou, "A 320 Gb/s-throughput capable 2×2 silicon-plasmonic router architecture for optical interconnects," J. Lightw. Technol. 29, 3185-3195 (2011).

J. Lightw. Technol. (1)

B. Jalali, S. Fathpour, "Silicon photonics," J. Lightw. Technol. 24 , 4600-4615 (2006).

J. Opt. Soc. Amer. A (1)

R. Zia, "Geometries and materials for subwavelength surface plasmon modes ," J. Opt. Soc. Amer. A 21, 2442 -2446 (2004).

Laser Photon. Rev. (1)

K. F. MacDonald, N. I. Zheludev, "Active plasmonics: Current status," Laser Photon. Rev. 4, 562-567 (2010).

Nano Lett. (1)

C. Delacour, "Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal–oxide–silicon nanophotonics," Nano Lett. 10, 2922-2926 ( 2010).

Nano Lett. (2)

R. M. Briggs, "Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides," Nano Lett. 10, 4851-4857 (2010).

J. A. Dionne, "PlasMOStor: A metal-oxide-Si field effect plasmonic modulator ," Nano Lett. 9, 897-902 (2009).

Nat. Mat. (1)

R. J. Walter, "A silicon-based electrical source of surface plasmon polaritons ," Nat. Mat. 9, 21- 25 (2010).

Nat. Mater. (1)

S. A. Maier, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).

Nat. Photon. (2)

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon. 4, 83-91 (2010).

P. Berini, I. De Leon, "Surface plasmon–polariton amplifiers and lasers," Nat. Photon. 6, 16-24 (2012 ).

Nat. Photon. (1)

R. F. Oulton, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).

Nature (2)

S. I. Bozhevolnyi, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).

K. Kim, "A role for graphene in silicon-based semiconductor devices ," Nature 479, 338- 344 (2011).

Opt. Comm. (1)

S.-E. Choi, J. T. Kim, " Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide," Opt. Comm. 285, 3735-3739 (2012).

Opt. Exp. (11)

Q. Li, M. Qiu, " Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide," Opt. Exp. 18, 15531-15543 (2010).

S. Zhu, G. Q. Lo, D. L. Kwong, "Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon- insulator-metal nanoplasmonic slot waveguide," Opt. Exp. 19, 15843-15854 (2011).

D. Dai, S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).

M. Wu, Z. Han, V. Van, "Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale," Opt. Exp. 18 , 11728-11736 ( 2010).

A. V. Krasavin, A. V. Zayats, "Silicon-based plasmonic waveguide," Opt. Exp. 18 , 11791-11799 ( 2010).

J. T. Kim, "Hybrid plasmonic waveguide for low-loss lightwave guiding ," Opt. Exp. 18, 2808-2813 (2010).

J. S. Orcutt, "Open foundry platform for high-performance electronic–photonic integration," Opt. Exp. 20, 12222-12232 (2012).

L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645 -6650 (2005).

A. Akbari, R. N. Tait, P. Berini, "Surface plasmon waveguide Schottky detector," Opt. Exp. 18, 8505-8514 (2010).

S. Zhu, "Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration," Opt. Exp. 19, 8888-8902 (2011).

A. Emboras, "MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices," Opt. Exp. 20, 13612-13621 (2012).

Opt. Lett. (3)

Phys. Rev. B (2)

J. A. Dionne, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).

J. C. Weeber, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).

Proc. IEEE (4)

A. V. Krishnamoorthy, "Computer systems based on silicon photonic interconnects ," Proc. IEEE 97, 1337-1361 (2009).

J. W. Goodman, "Optical interconnections for VLSI systems," Proc. IEEE 72, 850-866 (1984).

D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips," Proc. IEEE 88, 728 -749 (2000).

R. G. Beausoleil, "Nanoelectronic and nanophotonic interconnect ," Proc. IEEE 96, 230-247 (2008).

Sci. Rep. (1)

S. Papaioannou, "Active plasmonics in WDM traffic switching applications ," Sci. Rep. 2, 652 (2012).

Science (2)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions ," Science 3, 189-193 (2006).

A. Boltasseva, H. A. Atwater, "Low-loss plasmonic metamaterials," Science 331 , 290-291 (2011).

Other (2)

Electromagnetic Surface Modes (Wiley, 1982).

G. T. Reed, A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.