Abstract

An inline time-division multiplexing fiber Fabry-Perot (TDM-FFP) sensor system based on low-reflectivity fiber Bragg gratings (FBGs) is ideally suited to many applications. The intrinsic multiple reflections crosstalk (MRC) phenomenon in the inline TDM-FFP sensor system is a serious problem that limits the multiplexing number of sensors, which hindrances its practical applications. In this paper, a detailed analysis of the MRC in the inline TDM-FFP sensor system using phase generated carrier (PGC) scheme is reported. The equations of the interference intensity in the inline TDM-FFP sensor system with two sensors are deduced. The characteristics of the MRC are theoretically analyzed according to the equations and experimentally demonstrated. Finally, the instability of the MRC induced by random phase relationships of the sensors is analyzed using statistical method. The experimental results show that the crosstalk from the first sensor to the second sensor is ranged from $-$36.48 to $-$67.64 dB and to the third sensor is ranged from $-$16.02 to $-$60.64 dB.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. X. Wan, H. F. Taylor, "Intrinsic fiber Fabry-Perot temperature sensor with fiber bragg grating mirrors," Opt. Lett. 27, 1388-1390 (2002).
  2. G. A. Cranch, G. M. H. Flockhart, C. K. Kirkendall, "Efficient fiber Bragg grating and fiber Fabry–Pérot sensor multiplexing scheme using a broadband pulsed mode-locked laser," J. Lightw. Technol. 23, 3798-3807 (2005).
  3. K. Zhou, Z. Yan, L. Zhang, I. Bennion, "Refractometer based on fiber Bragg grating Fabry–Pérot cavity embedded with a narrow microchannel," Opt. Exp. 19, 11769-11779 (2011).
  4. T. K. Gangopadhyay, "Prospects for fibre bragg gratings and Fabry–Perot interferometers in fibre-optic vibration sensing," Sens. Actuators A, 20-38 (2004).
  5. C. Baldwin, M. Yu, C. Miller, J. Sirkis, S. Chen, B. Balachandran, "Bragg grating based Fabry–Perot sensor system for acoustic measurements," SPIE Sensory Phenomena and Meas. Instrum. for Smart Structures Mater. Conf. (1999) pp. 342-351.
  6. S. Niu, Y. Hu, Z. Hu, H. Luo, "Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection," IEEE Photon. Technol. Lett. 23, 1499-1501 (2011).
  7. J. P. Dakin, "Novel optical fiber hydrophone system using a single laser source and detector," Electron. Lett. 20, 14-15 (1984).
  8. “Fiber optic towed systems,” Naval Res. Lab.WashingtonDCUSA (2007)20375.
  9. D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor systems," Appl. Opt. 40, 2643-2654 (2001).
  10. C. Okawara, K. Saijyou, "Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing," Acoust. Sci. Technol. 28, 39-42 (2007).
  11. J. T. Kringlebotn, H. Nakstad, M. Eriksrud, "Fibre optic ocean bottom seismic cable system—From innovation to commercial success," Proc. 20th Opt. Fiber Sens. Conf. (2009) pp. 1-4.
  12. E. Rønnekleiv, O. H. Waagaard, H. Nakstad, A. Berg, Ocean bottom seismic sensing system U.S. Patent 11/381 (2008) vol. 880, pp, 1–15.
  13. A. D. Kersey, A. Dandridge, "Comparative analysis of multiplexing techniques for interferometic fiber sensing," Fiber Opt. Laser Sens. SPIE 1120, 236-246 (1989).
  14. G. A. Cranch, P. J. Nash, "Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM," J. Lightw. Technol. 19, 687-699 (2001).
  15. A. D. Kersey, K. L. Dorsey, A. Dandridge, "Cross talk in a fiber-optic Fabry–Perot sensor system with ring reflectors," Opt. Lett. 14, 93-95 (1989).
  16. O. H. Waagaard, Method and apparatus for reducing crosstalk interference in an inline Fabry–Perot sensor system U.S. Patent 10/649 (2006) vol. 588, pp. 1–5.
  17. O. H. Waagaard, E. Rønnekleiv, S. Forbord, D. Thingbø, "Reduction of crosstalk in inline sensor systems using inverse scattering," Proc. 19th Opt. Fiber Sens. Conf. (2008) pp. 1-4.
  18. S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber Michelson interferometric sensors," J. Lightw. Technol. 14, 1488-1499 (1996).
  19. C. C. Chan, Y. J. Gao, K. T. Lau, H. L. Ho, L. M. Zhou, W. Jin, "Characterization of crosstalk of a TDM FBG sensor array using a laser source," Opt. Laser Technol. 33, 299-304 (2001).
  20. C. C. Chan, W. Jin, D. N. Wang, M. S. Demokan, "A serial TDM FBG snsor system by using a tunable laser," Microw. Opt. Technol. Lett. 36, 2-4 (2003).
  21. D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor systems," Appl. Opt. 40, 2043-2054 (2001).
  22. Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, A. Wang, "A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings," IEEE Photon. Technol. Lett. 23, 70-72 (2011).

2011 (3)

K. Zhou, Z. Yan, L. Zhang, I. Bennion, "Refractometer based on fiber Bragg grating Fabry–Pérot cavity embedded with a narrow microchannel," Opt. Exp. 19, 11769-11779 (2011).

S. Niu, Y. Hu, Z. Hu, H. Luo, "Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection," IEEE Photon. Technol. Lett. 23, 1499-1501 (2011).

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, A. Wang, "A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings," IEEE Photon. Technol. Lett. 23, 70-72 (2011).

2007 (1)

C. Okawara, K. Saijyou, "Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing," Acoust. Sci. Technol. 28, 39-42 (2007).

2005 (1)

G. A. Cranch, G. M. H. Flockhart, C. K. Kirkendall, "Efficient fiber Bragg grating and fiber Fabry–Pérot sensor multiplexing scheme using a broadband pulsed mode-locked laser," J. Lightw. Technol. 23, 3798-3807 (2005).

2004 (1)

T. K. Gangopadhyay, "Prospects for fibre bragg gratings and Fabry–Perot interferometers in fibre-optic vibration sensing," Sens. Actuators A, 20-38 (2004).

2003 (1)

C. C. Chan, W. Jin, D. N. Wang, M. S. Demokan, "A serial TDM FBG snsor system by using a tunable laser," Microw. Opt. Technol. Lett. 36, 2-4 (2003).

2002 (1)

X. Wan, H. F. Taylor, "Intrinsic fiber Fabry-Perot temperature sensor with fiber bragg grating mirrors," Opt. Lett. 27, 1388-1390 (2002).

2001 (4)

D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor systems," Appl. Opt. 40, 2043-2054 (2001).

C. C. Chan, Y. J. Gao, K. T. Lau, H. L. Ho, L. M. Zhou, W. Jin, "Characterization of crosstalk of a TDM FBG sensor array using a laser source," Opt. Laser Technol. 33, 299-304 (2001).

G. A. Cranch, P. J. Nash, "Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM," J. Lightw. Technol. 19, 687-699 (2001).

D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor systems," Appl. Opt. 40, 2643-2654 (2001).

1996 (1)

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber Michelson interferometric sensors," J. Lightw. Technol. 14, 1488-1499 (1996).

1989 (2)

A. D. Kersey, K. L. Dorsey, A. Dandridge, "Cross talk in a fiber-optic Fabry–Perot sensor system with ring reflectors," Opt. Lett. 14, 93-95 (1989).

A. D. Kersey, A. Dandridge, "Comparative analysis of multiplexing techniques for interferometic fiber sensing," Fiber Opt. Laser Sens. SPIE 1120, 236-246 (1989).

1984 (1)

J. P. Dakin, "Novel optical fiber hydrophone system using a single laser source and detector," Electron. Lett. 20, 14-15 (1984).

Acoust. Sci. Technol. (1)

C. Okawara, K. Saijyou, "Fiber optic interferometric hydrophone using fiber Bragg grating with time division multiplexing," Acoust. Sci. Technol. 28, 39-42 (2007).

Appl. Opt. (2)

D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor systems," Appl. Opt. 40, 2643-2654 (2001).

D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor systems," Appl. Opt. 40, 2043-2054 (2001).

Electron. Lett. (1)

J. P. Dakin, "Novel optical fiber hydrophone system using a single laser source and detector," Electron. Lett. 20, 14-15 (1984).

Fiber Opt. Laser Sens. (1)

A. D. Kersey, A. Dandridge, "Comparative analysis of multiplexing techniques for interferometic fiber sensing," Fiber Opt. Laser Sens. SPIE 1120, 236-246 (1989).

IEEE Photon. Technol. Lett. (1)

S. Niu, Y. Hu, Z. Hu, H. Luo, "Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection," IEEE Photon. Technol. Lett. 23, 1499-1501 (2011).

IEEE Photon. Technol. Lett. (1)

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, A. Wang, "A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings," IEEE Photon. Technol. Lett. 23, 70-72 (2011).

J. Lightw. Technol. (3)

G. A. Cranch, G. M. H. Flockhart, C. K. Kirkendall, "Efficient fiber Bragg grating and fiber Fabry–Pérot sensor multiplexing scheme using a broadband pulsed mode-locked laser," J. Lightw. Technol. 23, 3798-3807 (2005).

G. A. Cranch, P. J. Nash, "Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM," J. Lightw. Technol. 19, 687-699 (2001).

S.-C. Huang, W.-W. Lin, M.-H. Chen, S.-C. Hung, H.-L. Chao, "Crosstalk analysis and system design of time-division multiplexing of polarization-insensitive fiber Michelson interferometric sensors," J. Lightw. Technol. 14, 1488-1499 (1996).

Microw. Opt. Technol. Lett. (1)

C. C. Chan, W. Jin, D. N. Wang, M. S. Demokan, "A serial TDM FBG snsor system by using a tunable laser," Microw. Opt. Technol. Lett. 36, 2-4 (2003).

Opt. Exp. (1)

K. Zhou, Z. Yan, L. Zhang, I. Bennion, "Refractometer based on fiber Bragg grating Fabry–Pérot cavity embedded with a narrow microchannel," Opt. Exp. 19, 11769-11779 (2011).

Opt. Lett. (2)

X. Wan, H. F. Taylor, "Intrinsic fiber Fabry-Perot temperature sensor with fiber bragg grating mirrors," Opt. Lett. 27, 1388-1390 (2002).

A. D. Kersey, K. L. Dorsey, A. Dandridge, "Cross talk in a fiber-optic Fabry–Perot sensor system with ring reflectors," Opt. Lett. 14, 93-95 (1989).

Opt. Laser Technol. (1)

C. C. Chan, Y. J. Gao, K. T. Lau, H. L. Ho, L. M. Zhou, W. Jin, "Characterization of crosstalk of a TDM FBG sensor array using a laser source," Opt. Laser Technol. 33, 299-304 (2001).

Sens. Actuators (1)

T. K. Gangopadhyay, "Prospects for fibre bragg gratings and Fabry–Perot interferometers in fibre-optic vibration sensing," Sens. Actuators A, 20-38 (2004).

Other (6)

C. Baldwin, M. Yu, C. Miller, J. Sirkis, S. Chen, B. Balachandran, "Bragg grating based Fabry–Perot sensor system for acoustic measurements," SPIE Sensory Phenomena and Meas. Instrum. for Smart Structures Mater. Conf. (1999) pp. 342-351.

“Fiber optic towed systems,” Naval Res. Lab.WashingtonDCUSA (2007)20375.

J. T. Kringlebotn, H. Nakstad, M. Eriksrud, "Fibre optic ocean bottom seismic cable system—From innovation to commercial success," Proc. 20th Opt. Fiber Sens. Conf. (2009) pp. 1-4.

E. Rønnekleiv, O. H. Waagaard, H. Nakstad, A. Berg, Ocean bottom seismic sensing system U.S. Patent 11/381 (2008) vol. 880, pp, 1–15.

O. H. Waagaard, Method and apparatus for reducing crosstalk interference in an inline Fabry–Perot sensor system U.S. Patent 10/649 (2006) vol. 588, pp. 1–5.

O. H. Waagaard, E. Rønnekleiv, S. Forbord, D. Thingbø, "Reduction of crosstalk in inline sensor systems using inverse scattering," Proc. 19th Opt. Fiber Sens. Conf. (2008) pp. 1-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.