Abstract

A novel all-optical fiber isolator with 14 dB isolation at 660 nm was demonstrated using the CdSe quantum dots doped optical fiber, which was fabricated by using the modified chemical vapor deposition and high temperature drawing processes. The Faraday rotation angle of 45 degrees was obtained at the fiber length of 183 cm under the magnetic field of 0.119 T.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. L. J. Aplet, J. W. Carson, "A Faraday effect optical isolator," Appl. Opt. 3, 544-545 (1964).
  2. F. J. Sansalone, "Compact optical isolator," Appl. Opt. 10, 2329-2331 (1971).
  3. F. Auracher, H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13, 435-438 (1975).
  4. M. Shirasaki, K. Asama, "Compact optical isolator for fibers using birefringent wedges," Appl. Opt. 21, 4296-4299 (1982).
  5. A. Shibukawa, A. Katusi, H. Iwamura, S. Hayashi, "Compact optical isolator for near-infrared radiation," Electron. Lett. 13, 721-722 (1977).
  6. T. Mizumoto, R. Takei, Y. Shoji, "Waveguide optical isolators for integrated optics," IEEE J. Quantum Electron. 48, 252-260 (2012).
  7. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
  8. P. Hansen, J.-P. Krume, "Magnetic and magneto-optical properties of garnet films," Thin Solid Films 114, 69-107 (1984).
  9. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).
  10. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, M. Inoue, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," Opt. Commun. 219, 271-276 (2003).
  11. L. Sun, S. Jiang, J. D. Zuegel, J. R. Marcianlt, "All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber," Opt. Lett. 35, 706-708 (2010).
  12. G. Lutes, "A high-performance single-mode fiber-optic isolator assembly," Telecommun. Data Acquisition Progr. Rep. (1987) pp. 8-11.
  13. J. Ballato, E. Snitzer, "Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848-6854 (1995).
  14. V. Annovazzi-Lodi, S. Donati, S. Merlo, A. Leona, "All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence," J. Lightw. Technol. 13, 2349-2353 (1995).
  15. S.-A. Kim, S. Ju, P. R. Watekar, Y. Kim, W.-T. Han, "Faraday effect of twisted single mode fiber upon changing the effective length under magnetic field," Proc. 15th Optoelectron. Commun. Conf. 2010 (2010) pp. 00359.
  16. R. Albertini, A. B. Villaverde, F. Aimbire, M. A. C. Salgado, J. M. Bjordal, L. P. Alves, E. Munin, M. S. Costa, "Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema," J. Photochem. Photobiol. B 89, 50-55 (2007).
  17. M. T. de Araujo, M. V. D. Vermelho, A. S. Gouveia-Neto, A. S. B. Sombra, J. A. M. Neto, "Efficient second-harmonic generation in praseodymium-doped Ga:La:S glass for 1.3- $\mu{\rm m}$ optical fiber amplifiers," IEEE Photon. Technol. Lett. 8, 821-823 (1996).
  18. B. Pezeshki, M. Hagberg, M. Zelinski, S. D. DeMars, E. Kolev, R. J. Lang, "400-mW single-frequency 660-nm semiconductor laser," IEEE Photon. Technol. Lett. 11, 791-793 (1999).
  19. P. R. Watekar, H. Y. Yang, S. Ju, W.-T. Han, "Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots," Opt. Exp. 17, 3157-3164 (2009).
  20. P. R. Watekar, S. Ju, S.-A. Kim, S. Jeong, Y. Kim, W.-T. Han, "Development of a highly sensitive compact sized optical fiber current sensor," Opt. Exp. 18, 17096-17105 (2010).
  21. P. R. Watekar, D. H. Kim, H. Yang, W.-T. Han, S. Ju, "Magnetic field sensitivity of germano-silicate optical fibers doped with CdSe nanoparticles and ${\rm Eu}^{2+}$ ions," Phys. Scr. 2010, 014054(1-3) (2010).
  22. A. J. Barlow, J. J. Ramskov-Hansen, D. N. Payne, "Birefringence and polarization mode-dispersion in spun single mode fibers," App. Opt. 20, 2962-2968 (1981).
  23. K. Kurosawa, K. Yamashita, T. Sowa, Y. Yamada, "Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme," IEICE Trans. Electron. E83-C, 326-330 (2000).
  24. Laser Focus World http://www.laserfocusworld.com.
  25. A. De, A. Puri, "Cyclotron frequency coupled enhancement of Kerr rotation in low refractive index-dielectric/magneto-optic bilayer thin-film structures," J. Appl. Phys. 91, 9777-9787 (2002).
  26. J. H. Kratzer, J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).
  27. C. Z. Tan, J. Arndt, "Faraday effect in silica glasses," Physica B 233, 1-7 (1997).
  28. J. Song, P. G. McLaren, D. J. Thomson, R. L. Middleton, "A Faraday effect based clamp-on magneto-optical current transducer for power systems," Proc. WESCANEX 95 Commun., Power, Computing. Conf. (1995) pp. 329-333.
  29. R. I. Laming, D. N. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightw. Technol. 7, 2084-2094 (1989).

2012 (1)

T. Mizumoto, R. Takei, Y. Shoji, "Waveguide optical isolators for integrated optics," IEEE J. Quantum Electron. 48, 252-260 (2012).

2010 (3)

L. Sun, S. Jiang, J. D. Zuegel, J. R. Marcianlt, "All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber," Opt. Lett. 35, 706-708 (2010).

P. R. Watekar, S. Ju, S.-A. Kim, S. Jeong, Y. Kim, W.-T. Han, "Development of a highly sensitive compact sized optical fiber current sensor," Opt. Exp. 18, 17096-17105 (2010).

P. R. Watekar, D. H. Kim, H. Yang, W.-T. Han, S. Ju, "Magnetic field sensitivity of germano-silicate optical fibers doped with CdSe nanoparticles and ${\rm Eu}^{2+}$ ions," Phys. Scr. 2010, 014054(1-3) (2010).

2009 (1)

P. R. Watekar, H. Y. Yang, S. Ju, W.-T. Han, "Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots," Opt. Exp. 17, 3157-3164 (2009).

2007 (1)

R. Albertini, A. B. Villaverde, F. Aimbire, M. A. C. Salgado, J. M. Bjordal, L. P. Alves, E. Munin, M. S. Costa, "Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema," J. Photochem. Photobiol. B 89, 50-55 (2007).

2004 (1)

J. H. Kratzer, J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).

2003 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, M. Inoue, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," Opt. Commun. 219, 271-276 (2003).

2002 (1)

A. De, A. Puri, "Cyclotron frequency coupled enhancement of Kerr rotation in low refractive index-dielectric/magneto-optic bilayer thin-film structures," J. Appl. Phys. 91, 9777-9787 (2002).

2000 (3)

K. Kurosawa, K. Yamashita, T. Sowa, Y. Yamada, "Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme," IEICE Trans. Electron. E83-C, 326-330 (2000).

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).

1999 (1)

B. Pezeshki, M. Hagberg, M. Zelinski, S. D. DeMars, E. Kolev, R. J. Lang, "400-mW single-frequency 660-nm semiconductor laser," IEEE Photon. Technol. Lett. 11, 791-793 (1999).

1997 (1)

C. Z. Tan, J. Arndt, "Faraday effect in silica glasses," Physica B 233, 1-7 (1997).

1996 (1)

M. T. de Araujo, M. V. D. Vermelho, A. S. Gouveia-Neto, A. S. B. Sombra, J. A. M. Neto, "Efficient second-harmonic generation in praseodymium-doped Ga:La:S glass for 1.3- $\mu{\rm m}$ optical fiber amplifiers," IEEE Photon. Technol. Lett. 8, 821-823 (1996).

1995 (2)

J. Ballato, E. Snitzer, "Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848-6854 (1995).

V. Annovazzi-Lodi, S. Donati, S. Merlo, A. Leona, "All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence," J. Lightw. Technol. 13, 2349-2353 (1995).

1989 (1)

R. I. Laming, D. N. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightw. Technol. 7, 2084-2094 (1989).

1984 (1)

P. Hansen, J.-P. Krume, "Magnetic and magneto-optical properties of garnet films," Thin Solid Films 114, 69-107 (1984).

1982 (1)

1981 (1)

A. J. Barlow, J. J. Ramskov-Hansen, D. N. Payne, "Birefringence and polarization mode-dispersion in spun single mode fibers," App. Opt. 20, 2962-2968 (1981).

1977 (1)

A. Shibukawa, A. Katusi, H. Iwamura, S. Hayashi, "Compact optical isolator for near-infrared radiation," Electron. Lett. 13, 721-722 (1977).

1975 (1)

F. Auracher, H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13, 435-438 (1975).

1971 (1)

1964 (1)

App. Opt. (1)

A. J. Barlow, J. J. Ramskov-Hansen, D. N. Payne, "Birefringence and polarization mode-dispersion in spun single mode fibers," App. Opt. 20, 2962-2968 (1981).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).

Electron. Lett. (1)

A. Shibukawa, A. Katusi, H. Iwamura, S. Hayashi, "Compact optical isolator for near-infrared radiation," Electron. Lett. 13, 721-722 (1977).

IEEE J. Quantum Electron. (1)

T. Mizumoto, R. Takei, Y. Shoji, "Waveguide optical isolators for integrated optics," IEEE J. Quantum Electron. 48, 252-260 (2012).

IEEE Photon. Technol. Lett. (2)

M. T. de Araujo, M. V. D. Vermelho, A. S. Gouveia-Neto, A. S. B. Sombra, J. A. M. Neto, "Efficient second-harmonic generation in praseodymium-doped Ga:La:S glass for 1.3- $\mu{\rm m}$ optical fiber amplifiers," IEEE Photon. Technol. Lett. 8, 821-823 (1996).

B. Pezeshki, M. Hagberg, M. Zelinski, S. D. DeMars, E. Kolev, R. J. Lang, "400-mW single-frequency 660-nm semiconductor laser," IEEE Photon. Technol. Lett. 11, 791-793 (1999).

IEICE Trans. Electron. (1)

K. Kurosawa, K. Yamashita, T. Sowa, Y. Yamada, "Flexible fiber Faraday effect current sensor using flint glass fiber and reflection scheme," IEICE Trans. Electron. E83-C, 326-330 (2000).

J. Appl. Phys. (1)

A. De, A. Puri, "Cyclotron frequency coupled enhancement of Kerr rotation in low refractive index-dielectric/magneto-optic bilayer thin-film structures," J. Appl. Phys. 91, 9777-9787 (2002).

J. Lightw. Technol. (2)

R. I. Laming, D. N. Payne, "Electric current sensors employing spun highly birefringent optical fibers," J. Lightw. Technol. 7, 2084-2094 (1989).

V. Annovazzi-Lodi, S. Donati, S. Merlo, A. Leona, "All-fiber Faraday rotator made by a multiturn figure-of-eight coil with matched birefringence," J. Lightw. Technol. 13, 2349-2353 (1995).

J. Non-Cryst. Solids (1)

J. H. Kratzer, J. Schroeder, "Magnetooptic properties of semiconductor quantum dots in glass composition," J. Non-Cryst. Solids 349, 299-308 (2004).

J. Photochem. Photobiol. B (1)

R. Albertini, A. B. Villaverde, F. Aimbire, M. A. C. Salgado, J. M. Bjordal, L. P. Alves, E. Munin, M. S. Costa, "Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema," J. Photochem. Photobiol. B 89, 50-55 (2007).

Opt. Commun. (2)

F. Auracher, H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13, 435-438 (1975).

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, M. Inoue, "Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices," Opt. Commun. 219, 271-276 (2003).

Opt. Exp. (2)

P. R. Watekar, H. Y. Yang, S. Ju, W.-T. Han, "Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots," Opt. Exp. 17, 3157-3164 (2009).

P. R. Watekar, S. Ju, S.-A. Kim, S. Jeong, Y. Kim, W.-T. Han, "Development of a highly sensitive compact sized optical fiber current sensor," Opt. Exp. 18, 17096-17105 (2010).

Opt. Lett. (1)

Phys. Scr. (1)

P. R. Watekar, D. H. Kim, H. Yang, W.-T. Han, S. Ju, "Magnetic field sensitivity of germano-silicate optical fibers doped with CdSe nanoparticles and ${\rm Eu}^{2+}$ ions," Phys. Scr. 2010, 014054(1-3) (2010).

Physica B (1)

C. Z. Tan, J. Arndt, "Faraday effect in silica glasses," Physica B 233, 1-7 (1997).

Thin Solid Films (1)

P. Hansen, J.-P. Krume, "Magnetic and magneto-optical properties of garnet films," Thin Solid Films 114, 69-107 (1984).

Other (4)

S.-A. Kim, S. Ju, P. R. Watekar, Y. Kim, W.-T. Han, "Faraday effect of twisted single mode fiber upon changing the effective length under magnetic field," Proc. 15th Optoelectron. Commun. Conf. 2010 (2010) pp. 00359.

G. Lutes, "A high-performance single-mode fiber-optic isolator assembly," Telecommun. Data Acquisition Progr. Rep. (1987) pp. 8-11.

J. Song, P. G. McLaren, D. J. Thomson, R. L. Middleton, "A Faraday effect based clamp-on magneto-optical current transducer for power systems," Proc. WESCANEX 95 Commun., Power, Computing. Conf. (1995) pp. 329-333.

Laser Focus World http://www.laserfocusworld.com.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.