Abstract

A two-dimensional (2D) magnetic field vector sensor is proposed and experimentally demonstrated. A theoretical model is established to analyze the physical mechanism in detail. The transmission response of the sensor depends on the angle ($\theta$) between the magnetic orientation and the polarization direction of tilted fiber Bragg grating (TFBG) and the intensity of magnetic field ($H$) when keeping $\theta$ constant and exhibits a sinuous behavior when keeping $H$ constant. When $-\theta_{c}<\theta<\theta_{c}$ and $\pi-\theta_{c}<\theta<\pi+\theta_{c}$, the transmission increases with the increment of $H$, while it decreases when $\theta_{c}<\theta<\pi-\theta_{c}$ or $\pi+\theta_{c}<\theta<2\pi-\theta_{c}$. The resonance peak in the transmission spectrum does not shift with the change of $H$ within the experimental error. The experimental results are in good agreement with our theoretical analysis. 2D magnetic field vector sensor could be achieved by employing rotators to change the orientation of the sensor head. Our proposed TFBG-based sensing system would find potential applications in magnetic field vector sensing and refractive index sensing for polarized liquids.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. Gottfried-Gotffried, W. Budde, R. Jähne, H. Kück, B. Sauer, S. Ulbricht, U. Wende, "A miniaturized magnetic-field sensor system consisting of a planar fluxgate sensor and a CMOS readout circuitry," Sens. Actuators A, Phys. 54, 443-447 (1996).
  2. R. S. Popovic, Z. Randjeloveic, D. Manic, "Integrated Hell-effect magnetic sensors," Sens. Actuators A, Phys. 91, 46-50 (2001).
  3. D. J. Monsma, J. C. Lodder, T. J. A. Popma, B. Dieny, "Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor," Phys. Rev. Lett. 72, 5260-5263 (1995).
  4. R. Prigl, U. Haeberlen, K. Jungmann, G. zu Putlitz, P. von Walter, "A high precision magnetometer based on pulsed NMR," Nucl. Instruments Methods Physics Res. A 374, 118-126 (1996).
  5. M. I. Faley, U. Poppe, K. Urban, "Operation of high-temperature superconductor magnetometer with submicrometer bicrystal junctions," Appl. Phys. Lett. 81, 2406-2408 (2002).
  6. J. Jarzynski, J. H. Cole, J. A. Bucaro, C. M. Davis, Jr."Magnetic field sensitivity of an optical fiber, with magnetostrictive jacket," Appl. Opt. 19, 3746-3748 (1980).
  7. M. N. Deeter, "Fiber-optic Faraday-effect magnetic-fieldsensor based on flux concentrators," Appl. Opt. 35, 154-157 (1996).
  8. C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, S.-W. Lin, "Magnetic sensor based on side-polished fiber Bragg Grating coated with iron film," IEEE Trans. Magn. 42, 3285-3287 (2006).
  9. S. Y. Yang, J. J. Chieh, H. E. Horng, "Origin and applications of magnetically tunable refractive index of magnetic fluid films," Appl. Phys. Lett. 84, 5205-5206 (2004).
  10. J. Philip, P. D. Shima, B. Raj, "Nanofluid with tunable thermal properties," Appl. Phys. Lett. 92, 043108-1-043108-3 (2008).
  11. S. Y. Yang, Y. P. Chiu, B. Y. Jeang, H. E. Horng, "Origin of field-dependent optical transmission of magnetic fluid films," Appl. Phys. Lett. 79, 2372-2374 (2001).
  12. H.-E. Horng, S. Y. Yang, S. L. Lee, "Magnetochromatics of the magnetic fluid film under a dynamic magnetic field," Appl. Phys. Lett. 79, 350-352 (2001).
  13. P. C. Scholten, "The origin of magnetic birefringence and dichroism in magnetic fluids," IEEE Trans. Magn. MAG–16, 221-225 (1980).
  14. H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, S. N. Kale, "Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection," Appl. Phys. Lett. 99, 161101(1–3) (2011).
  15. Y. Zhao, R. Lv, Y. Ying, Q. Wang, "Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid," Opt. Laser Technol. 44, 899-902 (2012).
  16. P. Zu, C. C. Chan, W. S. Lew, Y. Jin, Y. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, X. Dong, "Magneto-optical fiber sensor based on magnetic fluid," Opt. Lett. 37, 398-400 (2012).
  17. A. Candiani, M. Konstantaki, W. Margulis, S. Pissadaki, "Optofluidic magnetometer developed in amicrostructured optical fiber," Opt. Lett. 37, 4467-4469 (2012).
  18. P. Childs, A. Candiani, S. Pissadakis, "Optical fiber cladding ring magnetic field sensor," IEEE Photon. Technol. Lett. 23, 929-931 (2011).
  19. L.-Y. Shao, Y. Shevchenko, J. Albert, "Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors," Opt. Exp. 18, 11464-11471 (2010).
  20. J. Albert, C. Caucheteur, L. Shao, A. Ianoul, S. Barry, "Plasmons and nanoparticle coatings on optical fibers: Playing with tilted fiber Bragg gratings," Advanced Photonics Congress (Optical Society of America, 2012) Colorado SpringsCOUSA paper BTu2E.1 http://www.opticsinfobase.org/abstract.cfm?URI=BGPP-2012-BTu2E.1.
  21. C. Caucheteur, P. Mégret, "Demodulation technique for weakly TiltedFiber Bragg grating refractometer," IEEE Photon. Technol. Lett. 17, 2703-2705 (2005).
  22. T. Guo, H.-Y. Tam, P. A. Krug, J. Albert, "Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling," Opt. Exp. 17, 5736-5742 (2009).
  23. C. Chen, J. Albert, "Strain-optic coefficients of individual cladding modes of singlemode fibre: Theory and experiment," Electron. Lett. 42, 1027-1028 (2006).
  24. C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, P. Mégret, "External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses," IEEE Sensors J. 8, 1330-1336 (2008).
  25. T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, J. Albert, "Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling," Opt. Exp. 17, 20651-20660 (2009).
  26. L.-Y. Shao, L. Xiong, C. Chen, A. Laronche, J. Albert, "Directional bend sensor based on re-growntilted fiber bragg grating," J. Lightwave Technol. 28, 2681-2687 (2010).
  27. L.-Y. Shao, J. Albert, "Compact fiber-optic vector inclinometer," Opt. Lett. 35, 1034-1036 (2010).
  28. S. Taketomi, S. Ogawa, H. Miyajima, S. Chikazumi, "Magnetic birefringence and dichroism in magnetic fluid," IEEE Transl, J. Magn. Jpn. 4, 384-394 (1989).
  29. T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15.8, 1277-1294 (1997).
  30. C. Chen, T. Guo, A. Laronche, J. Albert, "Radiation mode resonances of tilted fiber Bragg gratings for high index media measurement," Proc. SPIE 19th Int. Conf. Opt. Fibre Sens. (2008) pp. 700418-1-700418-4.
  31. G. Laffont, P. Ferdinand, "Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica," Electron. Lett. 37, 289-290 (2001).

2012 (3)

2011 (2)

P. Childs, A. Candiani, S. Pissadakis, "Optical fiber cladding ring magnetic field sensor," IEEE Photon. Technol. Lett. 23, 929-931 (2011).

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, S. N. Kale, "Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection," Appl. Phys. Lett. 99, 161101(1–3) (2011).

2010 (3)

L.-Y. Shao, L. Xiong, C. Chen, A. Laronche, J. Albert, "Directional bend sensor based on re-growntilted fiber bragg grating," J. Lightwave Technol. 28, 2681-2687 (2010).

L.-Y. Shao, J. Albert, "Compact fiber-optic vector inclinometer," Opt. Lett. 35, 1034-1036 (2010).

L.-Y. Shao, Y. Shevchenko, J. Albert, "Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors," Opt. Exp. 18, 11464-11471 (2010).

2009 (2)

T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, J. Albert, "Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling," Opt. Exp. 17, 20651-20660 (2009).

T. Guo, H.-Y. Tam, P. A. Krug, J. Albert, "Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling," Opt. Exp. 17, 5736-5742 (2009).

2008 (2)

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, P. Mégret, "External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses," IEEE Sensors J. 8, 1330-1336 (2008).

J. Philip, P. D. Shima, B. Raj, "Nanofluid with tunable thermal properties," Appl. Phys. Lett. 92, 043108-1-043108-3 (2008).

2006 (2)

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, S.-W. Lin, "Magnetic sensor based on side-polished fiber Bragg Grating coated with iron film," IEEE Trans. Magn. 42, 3285-3287 (2006).

C. Chen, J. Albert, "Strain-optic coefficients of individual cladding modes of singlemode fibre: Theory and experiment," Electron. Lett. 42, 1027-1028 (2006).

2005 (1)

C. Caucheteur, P. Mégret, "Demodulation technique for weakly TiltedFiber Bragg grating refractometer," IEEE Photon. Technol. Lett. 17, 2703-2705 (2005).

2004 (1)

S. Y. Yang, J. J. Chieh, H. E. Horng, "Origin and applications of magnetically tunable refractive index of magnetic fluid films," Appl. Phys. Lett. 84, 5205-5206 (2004).

2002 (1)

M. I. Faley, U. Poppe, K. Urban, "Operation of high-temperature superconductor magnetometer with submicrometer bicrystal junctions," Appl. Phys. Lett. 81, 2406-2408 (2002).

2001 (4)

R. S. Popovic, Z. Randjeloveic, D. Manic, "Integrated Hell-effect magnetic sensors," Sens. Actuators A, Phys. 91, 46-50 (2001).

S. Y. Yang, Y. P. Chiu, B. Y. Jeang, H. E. Horng, "Origin of field-dependent optical transmission of magnetic fluid films," Appl. Phys. Lett. 79, 2372-2374 (2001).

H.-E. Horng, S. Y. Yang, S. L. Lee, "Magnetochromatics of the magnetic fluid film under a dynamic magnetic field," Appl. Phys. Lett. 79, 350-352 (2001).

G. Laffont, P. Ferdinand, "Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica," Electron. Lett. 37, 289-290 (2001).

1997 (1)

T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15.8, 1277-1294 (1997).

1996 (3)

M. N. Deeter, "Fiber-optic Faraday-effect magnetic-fieldsensor based on flux concentrators," Appl. Opt. 35, 154-157 (1996).

R. Gottfried-Gotffried, W. Budde, R. Jähne, H. Kück, B. Sauer, S. Ulbricht, U. Wende, "A miniaturized magnetic-field sensor system consisting of a planar fluxgate sensor and a CMOS readout circuitry," Sens. Actuators A, Phys. 54, 443-447 (1996).

R. Prigl, U. Haeberlen, K. Jungmann, G. zu Putlitz, P. von Walter, "A high precision magnetometer based on pulsed NMR," Nucl. Instruments Methods Physics Res. A 374, 118-126 (1996).

1995 (1)

D. J. Monsma, J. C. Lodder, T. J. A. Popma, B. Dieny, "Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor," Phys. Rev. Lett. 72, 5260-5263 (1995).

1989 (1)

S. Taketomi, S. Ogawa, H. Miyajima, S. Chikazumi, "Magnetic birefringence and dichroism in magnetic fluid," IEEE Transl, J. Magn. Jpn. 4, 384-394 (1989).

1980 (2)

J. Jarzynski, J. H. Cole, J. A. Bucaro, C. M. Davis, Jr."Magnetic field sensitivity of an optical fiber, with magnetostrictive jacket," Appl. Opt. 19, 3746-3748 (1980).

P. C. Scholten, "The origin of magnetic birefringence and dichroism in magnetic fluids," IEEE Trans. Magn. MAG–16, 221-225 (1980).

Appl. Opt. (1)

M. N. Deeter, "Fiber-optic Faraday-effect magnetic-fieldsensor based on flux concentrators," Appl. Opt. 35, 154-157 (1996).

Appl. Phys. Lett. (4)

M. I. Faley, U. Poppe, K. Urban, "Operation of high-temperature superconductor magnetometer with submicrometer bicrystal junctions," Appl. Phys. Lett. 81, 2406-2408 (2002).

S. Y. Yang, Y. P. Chiu, B. Y. Jeang, H. E. Horng, "Origin of field-dependent optical transmission of magnetic fluid films," Appl. Phys. Lett. 79, 2372-2374 (2001).

H.-E. Horng, S. Y. Yang, S. L. Lee, "Magnetochromatics of the magnetic fluid film under a dynamic magnetic field," Appl. Phys. Lett. 79, 350-352 (2001).

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, S. N. Kale, "Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection," Appl. Phys. Lett. 99, 161101(1–3) (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Y. Yang, J. J. Chieh, H. E. Horng, "Origin and applications of magnetically tunable refractive index of magnetic fluid films," Appl. Phys. Lett. 84, 5205-5206 (2004).

J. Philip, P. D. Shima, B. Raj, "Nanofluid with tunable thermal properties," Appl. Phys. Lett. 92, 043108-1-043108-3 (2008).

Electron. Lett. (2)

C. Chen, J. Albert, "Strain-optic coefficients of individual cladding modes of singlemode fibre: Theory and experiment," Electron. Lett. 42, 1027-1028 (2006).

G. Laffont, P. Ferdinand, "Sensitivity of slanted fibre Bragg gratings to external refractive index higher than that of silica," Electron. Lett. 37, 289-290 (2001).

IEEE Photon. Technol. Lett. (1)

C. Caucheteur, P. Mégret, "Demodulation technique for weakly TiltedFiber Bragg grating refractometer," IEEE Photon. Technol. Lett. 17, 2703-2705 (2005).

IEEE Trans. Magn. (1)

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, S.-W. Lin, "Magnetic sensor based on side-polished fiber Bragg Grating coated with iron film," IEEE Trans. Magn. 42, 3285-3287 (2006).

IEEE Photon. Technol. Lett. (1)

P. Childs, A. Candiani, S. Pissadakis, "Optical fiber cladding ring magnetic field sensor," IEEE Photon. Technol. Lett. 23, 929-931 (2011).

IEEE Sensors J. (1)

C. Caucheteur, D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, P. Mégret, "External refractive index sensitivity of weakly tilted fiber Bragg gratings with different coating thicknesses," IEEE Sensors J. 8, 1330-1336 (2008).

IEEE Trans. Magn. (1)

P. C. Scholten, "The origin of magnetic birefringence and dichroism in magnetic fluids," IEEE Trans. Magn. MAG–16, 221-225 (1980).

IEEE Transl, J. Magn. Jpn. (1)

S. Taketomi, S. Ogawa, H. Miyajima, S. Chikazumi, "Magnetic birefringence and dichroism in magnetic fluid," IEEE Transl, J. Magn. Jpn. 4, 384-394 (1989).

J. Lightw. Technol. (1)

T. Erdogan, "Fiber grating spectra," J. Lightw. Technol. 15.8, 1277-1294 (1997).

J. Lightwave Technol. (1)

Nucl. Instruments Methods Physics Res. A (1)

R. Prigl, U. Haeberlen, K. Jungmann, G. zu Putlitz, P. von Walter, "A high precision magnetometer based on pulsed NMR," Nucl. Instruments Methods Physics Res. A 374, 118-126 (1996).

Opt. Laser Technol. (1)

Y. Zhao, R. Lv, Y. Ying, Q. Wang, "Hollow-core photonic crystal fiber Fabry-Perot sensor for magnetic field measurement based on magnetic fluid," Opt. Laser Technol. 44, 899-902 (2012).

Opt. Exp. (3)

T. Guo, L. Shao, H.-Y. Tam, P. A. Krug, J. Albert, "Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling," Opt. Exp. 17, 20651-20660 (2009).

L.-Y. Shao, Y. Shevchenko, J. Albert, "Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors," Opt. Exp. 18, 11464-11471 (2010).

T. Guo, H.-Y. Tam, P. A. Krug, J. Albert, "Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling," Opt. Exp. 17, 5736-5742 (2009).

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. J. Monsma, J. C. Lodder, T. J. A. Popma, B. Dieny, "Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor," Phys. Rev. Lett. 72, 5260-5263 (1995).

Sens. Actuators A, Phys. (1)

R. Gottfried-Gotffried, W. Budde, R. Jähne, H. Kück, B. Sauer, S. Ulbricht, U. Wende, "A miniaturized magnetic-field sensor system consisting of a planar fluxgate sensor and a CMOS readout circuitry," Sens. Actuators A, Phys. 54, 443-447 (1996).

Sens. Actuators A, Phys. (1)

R. S. Popovic, Z. Randjeloveic, D. Manic, "Integrated Hell-effect magnetic sensors," Sens. Actuators A, Phys. 91, 46-50 (2001).

Other (2)

J. Albert, C. Caucheteur, L. Shao, A. Ianoul, S. Barry, "Plasmons and nanoparticle coatings on optical fibers: Playing with tilted fiber Bragg gratings," Advanced Photonics Congress (Optical Society of America, 2012) Colorado SpringsCOUSA paper BTu2E.1 http://www.opticsinfobase.org/abstract.cfm?URI=BGPP-2012-BTu2E.1.

C. Chen, T. Guo, A. Laronche, J. Albert, "Radiation mode resonances of tilted fiber Bragg gratings for high index media measurement," Proc. SPIE 19th Int. Conf. Opt. Fibre Sens. (2008) pp. 700418-1-700418-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.